

M1 Business Park – Zones A & F

Environmental Impact Assessment Report Volume 3: Appendices 7- 8 M1 Vida Ltd April 2024

Appendix 7: Land, Soils and Geology

PRICEINED. 7000 POR

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

Lands at Rowans Big and Rowans Little

Description/Comments

Two samples were taken during site investigations at agricultural land.

No asbestos detected in sample TP02 or TP06

Project Site

M1 Retail Park Zone A and Zone F Lands at Rowans Big and Rowans Little

Classified by

Name:

Company:

Stephen Coakley Date:

Geosyntec Consultants Ltd (Ireland) **Unit 10, Northwood Court**

25 Mar 2024 17:28 GMT

Northwood Crescent

Telephone:

Dublin

D09 W8DT

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the

use of the software and both basic and advanced waste classification techniques. Certification

has to be renewed every 3 years. HazWasteOnline™ Certification:

CERTIFIED

Hazardous Waste Classification

Date 09 Dec 2021

Next 3 year Refresher due by Dec 2024

Purpose of classification

7 - Disposal of Waste

Address of the waste

Rowans Big and Rowans Little Rathcoole County Dublin

Post Code NA

Description of industry/producer giving rise to the waste

Agricultural land

Description of the specific process, sub-process and/or activity that created the waste

Excavations as part of site investigation at the site.

Description of the waste

Natural ground clayey soil.

consultants

HazWasteOnlineTM
Report created by Stephen Coakley on 25 Mar 2024

Job summary

# Sample name Depth [m] Classification Result Hazard properties Inert Non Haz	Page	
	- i age	
1 TP02 Non Hazardous Pass Pass O	. 3	
2 TP06 Non Hazardous Pass Pass	<u>ح</u> 7	

Related documents

# Name	Description
1 RILTA 2016	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report

Created by: Stephen Coakley	Created date: 25 Mar 2024 17:28 GM
-----------------------------	------------------------------------

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	11
Appendix B: Rationale for selection of metal species	13
Appendix C: Version	13

Page 2 of 14 AYUK0-0ZEDU-UP8SQ www.hazwasteonline.com

HazWasteOnline[™]

Report created by Stephen Coakley on 25 Mar 2024

Classification of sample: TP02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP02 Chapter: Moisture content:

Entry: 24.9%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 24.9% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	æ\$	antimony { antimony trioxide } 051-005-00-X		5 mg/kg	1.197	4.495 mg/kg	0.00045 %	√	
2	4	arsenic { arsenic acid and its salts with the exception of those specified elsewhere in this Annex }		12.8 mg/kg	1.895	18.212 mg/kg	0.00182 %	√	
3	4	barium { • barium oxide } 215-127-9 1304-28-5		92 mg/kg	1.117	77.142 mg/kg	0.00771 %	√	
4	4	cadmium { cadmium oxide } 048-002-00-0		3.8 mg/kg	1.142	3.26 mg/kg	0.000326 %	√	
5	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		82 mg/kg	1.126	69.334 mg/kg	0.00693 %	√	
6	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	21 mg/kg		15.771 mg/kg	0.00158 %	√	
7	1	molybdenum { molybdenum(VI) oxide } 042-001-00-9	-	8.9 mg/kg	1.5	10.027 mg/kg	0.001 %	√	
8	4	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
9	4	080-002-00-6 zinc { zinc oxide }		88 mg/kg	1.245	82.261 mg/kg	0.00823 %	✓	
10		030-013-00-7 215-222-5 1314-13-2 phenol 604-001-00-2 203-632-7 108-95-2		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
11	4	nickel { nickel(II) oxide (nickel monoxide) } 028-003-00-2		78.3 mg/kg	1.273	74.833 mg/kg	0.00748 %	✓	
12	æ\$	selenium { nickel selenate } 028-031-00-5		5 mg/kg	2.554	9.59 mg/kg	0.000959 %	✓	
13		boron { diboron trioxide } 005-008-00-8	11	0.3 mg/kg	3.22	0.725 mg/kg	0.0000725 %	√	
14	-	PAHs (total)		<0.64 mg/kg		<0.64 mg/kg	<0.000064 %		<lod< td=""></lod<>
15	0	TPH (C6 to C40) petroleum group		<26 mg/kg		<26 mg/kg	<0.0026 %		<lod< td=""></lod<>

HazWasteOnline[™] Report created by Stephen Coakley on 25 Mar 2024

consultants

								<u> </u>						
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
16		number tert-butyl methyl etl 2-methoxy-2-methy			O	-0.005			-0.005		-0.00000F 8/	0	ZEOD	
16			216-653-1	1634-04-4	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		ZEOD	
17		benzene	200-753-7	71-43-2		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod td="" x<=""></lod>	
18		toluene 601-021-00-3	203-625-9	108-88-3		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
19	0	ethylbenzene				<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
			202-849-4	100-41-4	1									
20			ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
21			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
22	0	polychlorobiphenyl		1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>	
23	4	chromium in chrom compounds, with th of compounds spec 024-017-00-8	ne exception of bar	ls { chromium (VI) ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>	
24	4	chromium in chrom		s { • 1308-38-9		80.8	mg/kg	1.462	88.688	mg/kg	0.00887 %	√		
25	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }			<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>		
		006-007-00-5												
26		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<			<		<		ND	
27		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
28	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
29	9	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>	
30	0	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
31	0	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
32	0	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>	
33		benzo[b]fluoranthene 601-034-00-4				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
34	0	benzo[bk]fluoranthe		[1] 205-99-2 [2] 207-08-9		<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>	
35		benzo[j]fluoranthen 601-035-00-X	e 205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>	
36		benzo[k]fluoranther	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>	
	_				_							_		

HazWasteOnline[™] Report created by Stephen Coakley on 25 Mar 2024

_													
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	d conc.	Passification value	MC Applied	Conc. Not Used
37	0	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
38		benzo[a]pyrene; be	enzo[def]chrysene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %	2	- <lod< th=""></lod<>
		601-032-00-3	200-028-5	50-32-8									X
39	0	indeno[123-cd]pyre		400.00.5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
			205-893-2	193-39-5	-							Н	
40	0	pyrene	004 007 0	400 00 0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< th=""></lod<>
			204-927-3	129-00-0	-							Ш	
41		chrysene		1		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9								Ш	
42		benzo[a]anthracene				< 0.06	mg/kg	,	<0.06	mg/kg	<0.000006 %		<lod< th=""></lod<>
42		601-033-00-9	200-280-6	56-55-3		ζ0.00	ilig/kg		<0.06	mg/kg	<0.000006 %		\LUD
43		dibenz[a,h]anthrac	ene			0.04	200 or /1 cor		-0.04	200 cm/l c cm	-0.000004.0/		1.00
43		601-041-00-2	200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
44		benzo[e]pyrene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
		601-049-00-6	205-892-7	192-97-2						- 0 0			
45	Θ	coronene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
			205-881-7	191-07-1			3,9			33			
46	0	benzo[ghi]perylene)	·		<0.04 mg/l			<0.04	mg/kg	1 <0.00004 %		<lod< th=""></lod<>
		205-883-8 191-24-2					9					Ш	
										Total:	0.0485 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
₫	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

AYUK0-0ZEDU-UP8SQ Page 5 of 14 www.hazwasteonline.com

HazWasteOnlineTM
Report created by Stephen Coakley on 25 Mar 2024

consultants

WAC results for sample: TP02

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis		Landfill Waste Acceptance Criteria Limit			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill	
1	TOC (total organic carbon)	%	1.46	3	5	
2	LOI (loss on ignition)	%	17	-	-	
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.03	6	-	
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.035	1	-	
5	Mineral oil (C10 to C40)	mg/kg	<30	500	-	
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<0.064	100	-	
7	pH	pН	7.92	-	>6	
8	ANC (acid neutralisation capacity)	mol/kg		-	-	
	Eluate Analysis 10:1					
9	arsenic	mg/kg	<0.025	0.5	2	
10	barium	mg/kg	<0.03	20	100	
11	cadmium	mg/kg	<0.005	0.04	1	
12	chromium	mg/kg	<0.015	0.5	10	
13	copper	mg/kg	<0.07	2	50	
14	mercury	mg/kg	<0.0001	0.01	0.2	
15	molybdenum	mg/kg	<0.02	0.5	10	
16	nickel	mg/kg	<0.02	0.4	10	
17	lead	mg/kg	<0.05	0.5	10	
18	antimony	mg/kg	<0.02	0.06	0.7	
19	selenium	mg/kg	<0.03	0.1	0.5	
20	zinc	mg/kg	<0.03	4	50	
21	chloride	mg/kg	<3	800	15,000	
22	fluoride	mg/kg	<3	10	150	
23	sulphate	mg/kg	25	1,000	20,000	
24	phenol index	mg/kg	<0.1	1	-	
25	DOC (dissolved organic carbon)	mg/kg	<20	500	800	
26	TDS (total dissolved solids)	mg/kg	<350	4,000	60,000	

Key

User supplied data

Page 6 of 14 AYUK0-0ZEDU-UP8SQ www.hazwasteonline.com

HazWasteOnline[™]

Report created by Stephen Coakley on 25 Mar 2024

Classification of sample: TP06

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP06 Chapter: Moisture content: Entry: 17.1%

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

03)

(wet weight correction) **Hazard properties**

None identified

Determinands

Moisture content: 17.1% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CAS Number	CLP Note	User enter	lear antared data		Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide }			4	mg/kg	1.197	3.97	mg/kg	0.000397 %	√	
		051-005-00-X 215-175-0	1309-64-4								Ĺ	
2	4	arsenic { arsenic acid and its salts those specified elsewhere in this A 033-005-00-1			24.5	mg/kg	1.895	38.479	mg/kg	0.00385 %	✓	
3	4	barium { • barium oxide }			100	mg/kg	1.117	92.558	mg/kg	0.00926 %	√	
		215-127-9	1304-28-5									
4	4	cadmium { cadmium oxide }			1.3	mg/kg	1.142	1.231	mg/kg	0.000123 %	√	
		048-002-00-0 215-146-2	1306-19-0									
5	4	copper { dicopper oxide; copper (I) 029-002-00-X 215-270-7	oxide }		51	mg/kg	1.126	47.601	mg/kg	0.00476 %	✓	
6	4	lead (lead compounds with the specified elsewhere in this Annex (exception of those	1	20	mg/kg		16.58	mg/kg	0.00166 %	√	
		082-001-00-6										
7	4	molybdenum {			7.9	mg/kg	1.5	9.825	mg/kg	0.000982 %	✓	
8	4	042-001-00-9 215-204-7 [1313-27-5 mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }		1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
_	_	080-002-00-6									_	
9	_	zinc { zinc oxide }			74	mg/kg	1.245	76.358	mg/kg	0.00764 %	1	
		030-013-00-7 215-222-5	1314-13-2									
10		phenol	400.05.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>
_	\vdash	604-001-00-2 203-632-7	108-95-2	-							-	
11	4	nickel { nickel(II) oxide (nickel mono 028-003-00-2	1313-99-1 [1] 3] 11099-02-8 [2]		48.7	mg/kg	1.273	51.377	mg/kg	0.00514 %	✓	
			34492-97-2 [3]									
12	4	selenium { nickel selenate } 028-031-00-5 239-125-2	15060-62-5	-	2	mg/kg	2.554	4.234	mg/kg	0.000423 %	✓	
13	4	horon (diboron triovide)		11	0.7	mg/kg	3.22	1.868	mg/kg	0.000187 %	√	
13	Ĭ	005-008-00-8 215-125-8	1303-86-2	1''	0.7	mg/kg	5.22	1.000	mg/kg	0.000107 /8		
14	0	PAHs (total)			<0.64	mg/kg		<0.64	mg/kg	<0.000064 %		<lod< th=""></lod<>
15	0	TPH (C6 to C40) petroleum group		H	<26	mg/kg		<26	mg/kg	<0.0026 %		<lod< th=""></lod<>
			TPH									

HazWasteOnline™ Report created by Stephen Coakley on 25 Mar 2024

consul	ltants
--------	--------

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
40		number tert-butyl methyl etl			O	0.005			0.005		0.0000005.8/	0	Z rop	
16		2-methoxy-2-methy 603-181-00-X	216-653-1	1634-04-4	-	<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		KEOD .	
17		benzene	200-753-7	71-43-2		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod td="" x<=""></lod>	
18		toluene 601-021-00-3	203-625-9	108-88-3		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
19	9	ethylbenzene	,			<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
			202-849-4	100-41-4								H		
20			ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
21			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.005	mg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
22	0	polychlorobiphenyl		1336-36-3		<0.035	mg/kg		<0.035	mg/kg	<0.0000035 %		<lod< td=""></lod<>	
23	4	chromium in chrom compounds, with th of compounds spec 024-017-00-8	ne exception of bar	s { chromium (VI) ium chromate and		<0.3	mg/kg	2.27	<0.681	mg/kg	<0.0000681 %		<lod< td=""></lod<>	
24	4	chromium in chrom		s {		70.2	mg/kg	1.462	85.056	mg/kg	0.00851 %	√		
25	4	cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }			<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>		
		006-007-00-5												
26		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<			<		<		ND	
27		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
28	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
29	9	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>	
30	0	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
31	0	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>	
32	0	phenanthrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>	
33		benzo[b]fluoranthene 601-034-00-4				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>	
34	0	benzo[bk]fluoranthe		[1] 205-99-2 [2] 207-08-9		<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>	
35		benzo[j]fluoranthen 601-035-00-X	ne 205-910-3	205-82-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>	
36		benzo[k]fluoranther	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>	
	_											_		

HazWasteOnline[™] Report created by Stephen Coakley on 25 Mar 2024

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		number			ပ				79	2	
37	0	fluoranthene				<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< th=""></lod<>
Ŭ.			205-912-4	206-44-0		10.00 mg/ng		10.000g/ng	10.000000 /0		1.202
38		benzo[a]pyrene; be	enzo[def]chrysene			<0.04 mg/kg		<0.04 mg/kg	<0.000004 %	K	- <lod< th=""></lod<>
		601-032-00-3	200-028-5	50-32-8		10.01g/n.g		ioio: ing/iig	10.00000170		× 1.202
39	0	indeno[123-cd]pyro				<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< th=""></lod<>
			205-893-2	193-39-5							
40	0	pyrene				<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< th=""></lod<>
			204-927-3	129-00-0							
41		chrysene				<0.02 mg/kg		<0.02 mg/kg	<0.000002 %		<lod< th=""></lod<>
Ш		601-048-00-0	205-923-4	218-01-9							
42		benzo[a]anthracen	ne			<0.06 mg/kg		<0.06 mg/kg	<0.000006 %		<lod< th=""></lod<>
		601-033-00-9	200-280-6	56-55-3		10.00 mg/ng		ioloo iiiging	10.000000 70		
43		dibenz[a,h]anthrac	ene			<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< th=""></lod<>
		601-041-00-2	200-181-8	53-70-3		10.01g/n.g		ioio: ing/iig	10.00000170		
44		benzo[e]pyrene				<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< th=""></lod<>
		601-049-00-6	205-892-7	192-97-2							
45	0	coronene				<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< th=""></lod<>
			205-881-7	191-07-1		io.o. mg/kg		is it is ingrity	10.00000170		
46	0	benzo[ghi]perylene	е			<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< th=""></lod<>
			205-883-8	191-24-2		Tig/kg		- Tilg/kg	10.00000170		`
		·	·					Total	0.0459 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
₫	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

AYUK0-0ZEDU-UP8SQ Page 9 of 14 www.hazwasteonline.com

consultants

HazWasteOnlineTM
Report created by Stephen Coakley on 25 Mar 2024

WAC results for sample: TP06

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis		Landfill Waste Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill	
1	TOC (total organic carbon)	%	1.11	3	5	
2	LOI (loss on ignition)	%	18.5	-	-	
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.03	6	-	
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.035	1	-	
5	Mineral oil (C10 to C40)	mg/kg	<30	500	-	
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<0.064	100	-	
7	pH	рН	7	-	>6	
8	ANC (acid neutralisation capacity)	mol/kg		-	-	
	Eluate Analysis 10:1					
9	arsenic	mg/kg	<0.025	0.5	2	
10	barium	mg/kg	<0.03	20	100	
11	cadmium	mg/kg	<0.005	0.04	1	
12	chromium	mg/kg	<0.015	0.5	10	
13	copper	mg/kg	<0.07	2	50	
14	mercury	mg/kg	<0.0001	0.01	0.2	
15	molybdenum	mg/kg	0.06	0.5	10	
16	nickel	mg/kg	<0.02	0.4	10	
17	lead	mg/kg	<0.05	0.5	10	
18	antimony	mg/kg	<0.02	0.06	0.7	
19	selenium	mg/kg	<0.03	0.1	0.5	
20	zinc	mg/kg	<0.03	4	50	
21	chloride	mg/kg	<3	800	15,000	
22	fluoride	mg/kg	<3	10	150	
23	sulphate	mg/kg	9	1,000	20,000	
24	phenol index	mg/kg	<0.1	1	-	
25	DOC (dissolved organic carbon)	mg/kg	<20	500	800	
26	TDS (total dissolved solids)	mg/kg	410	4,000	60,000	

Key

User supplied data

Page 10 of 14 AYUK0-0ZEDU-UP8SQ www.hazwasteonline.com

eate.
PROPERTY TO ONLY OF A SOCIAL PROPERTY OF A SO

Appendix A: Classifier defined and non EU CLP determinands

barium oxide (EC Number: 215-127-9, CAS Number: 1304-28-5)

Description/Comments: Data from ECHA's C&L Inventory Database. Sigma Aldrich SDS dated 6/2/20 Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/88825

Data source date: 02 Apr 2020

Hazard Statements: Acute Tox. 3; H301, Skin Corr. 1B; H314, Eye Dam. 1; H318, Acute Tox. 1; H332

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A: Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc, 1A: H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

PAHs (total)

Description/Comments: Worst case scenario combining risk phrases and substance specific thresholds from benzo[a]pyrene (CLP# 601-032-00-3) and benzo[a]anthracene (CLP# 601-033-00-9)

Data source: 2008/1272/EC - Table 3.2 of Annex VI of regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures and 2009/790/EC Annex IV - Annex IV of regulation 2009/790/EC - 1st Adaptation to Technical Progress for European Regulation 1272/2008 Data source date: 16 Dec 2008

Hazard Statements: Skin Sens. 1; H317, Carc. 1B; H350, Carc. 1B; H350 >= 0.01 %, Muta. 1B; H340, Aquatic Acute 1; H400 (M=100), Aquatic Chronic 1; H410 (M=100), Repr. 1B; H360FD

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Lig. 3; H226, Asp. Tox. 1; H304, STOT RE 2; H373, Muta. 1B; H340, Carc. 1B; H350, Repr. 2; H361d, Aquatic Chronic 2;

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

EU CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

AYUK0-0ZEDU-UP8SQ Page 11 of 14 www.hazwasteonline.com

azWasteOnl Report created by Stephen Coakley on 25 Mar 2024

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 17 Jul 2015
Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

• benzo[bk]fluoranthene (EC Number: [1] 205-911-9 [2] 205-916-6, CAS Number: [1] 205-99-2 [2] 207-08-9)

Description/Comments: Combined data from harmonised entries in CLP for benzo[b] and benzo[k]fluoranthene; C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 02 Mar 2017

Hazard Statements: Carc. 1B; H350 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC - Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

Page 12 of 14 AYUK0-0ZEDU-UP8SQ www.hazwasteonline.com

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Default selection for test. No background information on source of material

arsenic {arsenic acid and its salts with the exception of those specified elsewhere in this Annex}

worst case

barium {barium oxide}

Default selection for test. No background information available.

cadmium {cadmium oxide}

Default selection for test. No background information available.

copper {dicopper oxide; copper (I) oxide}

Default selection for test. No background information available.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Default selection for test. No background information available. Conservative

molybdenum (molybdenum(VI) oxide)

Default selection for test. No background information available.

mercury {inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex}

Default selection for test. No background information available. mercury is assumed to be inorganic form.

zinc {zinc oxide}

Default selection for test. No background information available.

nickel {nickel(II) oxide (nickel monoxide)}

Default selection for test. No background information available.

selenium (nickel selenate)

worst case

boron {diboron trioxide}

Default selection for test. No background information available.

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

speciated Cr data is available.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Default selection for test. No background information available.

Appendix C: Version

HazWasteOnline Classification Engine: EU WM3 1st Edition v1.1.NI using the EU LoW

HazWasteOnline Classification Engine Version: 2024.80.5988.11077 (20 Mar 2024)

HazWasteOnline Database: 2024.80.5988.11077 (20 Mar 2024)

consultants

HazWasteOnline[™] Stepi.
Principle 1700 A 202 A Report created by Stephen Coakley on 25 Mar 2024

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

POPs Amendment 2022 - Regulation (EU) 2022/2400 of 23 November 2022

19th ATP - Regulation (EU) 2023/1434 of 25 April 2023

20th ATP - Regulation (EU) 2023/1435 of 2 May 2023

Page 14 of 14 AYUK0-0ZEDU-UP8SQ www.hazwasteonline.com

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside

CH5 2UA

P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

Geosyntec Consulting Unit 10 Northwood Court Northwood Crescent Santry Dublin Ireland **D09 W8DT**

Attention: Stephen Coakley

Date: 17th July, 2023

Your reference :

Our reference : Test Report 23/10858 Batch 1

M1 Business Park Location:

Date samples received : 4th July, 2023

Status: Final Report

1 Issue:

Six samples were received for analysis on 4th July, 2023 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Geosyntec Consulting Client Name:

Reference:

M1 Business Park Location: Contact:

Report : Solid

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

Stephen Coakley EMT Job No: 23/10858

EMT Job No:	23/10858		 	 	 	 			
EMT Sample No.	5-8	21-24					(S)		
Sample ID	TP02	TP06					Please se	6,	
Depth								×	
-								e attached nations and a	
COC No / misc									×,
Containers	VJTB	VJTB							
Sample Date	03/07/2023	03/07/2023							
Sample Type	Soil	Soil							
Batch Number	1	1							
							LOD/LOR	Units	Method No.
Date of Receipt									TM20/DM45
Antimony	5	4 24.5					<1	mg/kg	TM30/PM15 TM30/PM15
Arsenic [#] Barium [#]	12.6 92	100					<0.5 <1	mg/kg mg/kg	TM30/PM15
	3.8	1.3					<0.1		TM30/PM15
Cadmium# Chromium#	80.8	70.2					<0.1	mg/kg mg/kg	TM30/PM15
Copper#	82	51					<1	mg/kg	TM30/PM15
Lead #	21	20					<5	mg/kg	TM30/PM15
Mercury#	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum#	8.9	7.9					<0.1	mg/kg	TM30/PM15
Nickel [#]	78.3	48.7					<0.7	mg/kg	TM30/PM15
Selenium#	5	2					<1	mg/kg	TM30/PM15
Total Sulphate as SO4#	112	327					<50	mg/kg	TM50/PM29
Water Soluble Boron #	0.3	0.7					<0.1	mg/kg	TM74/PM32
Zinc#	88	74					<5	mg/kg	TM30/PM15
PAH MS									
Naphthalene [#]	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06 <0.02	<0.06					<0.06 <0.02	mg/kg	TM4/PM8 TM4/PM8
Chrysene#	<0.02	<0.02 <0.07					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene # Benzo(a)pyrene #	<0.07	<0.07					<0.07	mg/kg mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 6 Total [#]	<0.22	<0.22					<0.22	mg/kg	TM4/PM8
PAH 17 Total	<0.64	<0.64					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1					<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	94	91					<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30					<30	mg/kg	TM5/PM8/PM16

Geosyntec Consulting Client Name:

Reference:

Location:

M1 Business Park

Contact: Stephen Coakley Report : Solid

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

EMT Job No:	23/10858						
EMT Sample No.	. 5-8	21-24					% .
Sample ID	TP02	TP06					7904
Depth	1						Please see attacked notes for

EMIT Sample No.	J-0	21-24					·O.		
Sample ID	TP02	TP06					```Z _Q	OX	
Depth							Please se	e attached	otes for all
COC No / misc								ations and a	
Containers	VJTB	VJTB					İ		
Sample Date		03/07/2023					i		
Sample Type	Soil	Soil							_
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	04/07/2023	04/07/2023							No.
TPH CWG									
Aliphatics									
>C5-C6 (HS_1D_AL)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4					<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_CU_1D_AL)	<26	<26					<26	mg/kg	TMS/TM36/PM8/PM12/PM1
>C6-C10 (HS_1D_AL)	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10					<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10					<10	mg/kg	TM5/PM8/PM16
Aromatics									
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4					<4	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7 <7	<7					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7 <7					<7 <7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR) Total aromatics C5-40 (EH+HS_CU_1D_AR)	<26	<26					<26	mg/kg mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52 <52					<52	mg/kg	TM5/TM36/PM8/PM12/PM1
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC10 (HS_1D_AR) >EC10-EC25 (EH 1D AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16
>EC10-EC25 (EH_1D_AR) >EC25-EC35 (EH_1D_AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16
_320 2000 (E11_1D_AI1)	-10	-10					1	g, kg	
MTBE#	<5	<5					<5	ug/kg	TM36/PM12
Benzene#	<5	<5					<5	ug/kg	TM36/PM12
Toluene#	<5	<5					<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5					<5	ug/kg	TM36/PM12
m/p-Xylene#	<5	<5					<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5					<5	ug/kg	TM36/PM12
PCB 28 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 52#	<5	<5					<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 118#	<5	<5					<5	ug/kg	TM17/PM8
PCB 138 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 153 #	<5	<5					<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5					<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35					<35	ug/kg	TM17/PM8

Geosyntec Consulting Client Name:

Reference:

Location: Contact:

M1 Business Park

Stephen Coakley

Report : Solid

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

EMT Job No:	23/10858					\\\/\!			
EMT Sample No.	5-8	21-24					% .		
Sample ID	TP02	TP06					Please se	0	
Depth								* 2	
COC No / misc							Please se abbrevia	e attached nations and a	otes for all ponyms
Containers		VJTB							
Sample Date									
Sample Type									
		Soil							
Batch Number		1					LOD/LOR	Units	Method No.
Date of Receipt									
Phenol [#]	<0.01	<0.01					<0.01	mg/kg	TM26/PM21B
Natural Moisture Content	24.9	17.1					<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)		14.6					<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3					<0.3	mg/kg	TM38/PM20
Chromium III	80.8	70.2					<0.5	mg/kg	NONE/NONE
Total Cyanide #	<0.5	<0.5					<0.5	mg/kg	TM89/PM45
								3 3	
Total Organic Carbon #	1.45	1.11					<0.02	%	TM21/PM24
Sulphide	<10	<10					<10	mg/kg	TM107/PM45
Elemental Sulphur	11	3					<1	mg/kg	TM108/PM114
pH #	7.92	7.00					<0.01	pH units	TM73/PM11

Geosyntec Consulting Client Name:

Reference: Location:

Contact:

M1 Business Park

Stephen Coakley

Report: CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

Contact: EMT Job No:	23/10858	Јоакіеу				C.			
EMT Sample No.	5-8	21-24							
							٠. ت		
Sample ID	TP02	TP06					79	0	
Depth							Please se	e attached n	otes for all
COC No / misc								ations and a	
Containers	VJTB	VJTB							
Sample Date									
Sample Type	Soil	Soil						Г	
Batch Number	1	1					LOD/LOR	Units	Method
Date of Receipt	04/07/2023	04/07/2023					LOD/LOR	Offics	No.
Dissolved Antimony#	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025					<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025					<0.025	mg/kg	TM30/PM17
Dissolved Barium #	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Barium (A10) #	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Boron #	<0.012	<0.012					<0.012	mg/l	TM30/PM17
Dissolved Boron (A10)#	<0.12	<0.12					<0.12	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005					<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)*	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015 <0.015	<0.0015 <0.015					<0.0015 <0.015	mg/l	TM30/PM17 TM30/PM17
Dissolved Chromium (A10) # Dissolved Copper #	<0.013	<0.013					<0.013	mg/kg mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Copper (A10)	<0.005	<0.005					<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	<0.002	0.006					<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	<0.02	0.06					<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc [#]	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001					<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF #	<0.0001	<0.0001					<0.0001	mg/kg	TM61/PM0
.		0.04							T1 100 /D1 10
Phenol	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1					<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3					<0.3	mg/l	TM173/PM0
Fluoride	<3	<3					<3	mg/kg	TM173/PM0
T Nacinati		Ū					v	9.1.9	
Sulphate as SO4 #	2.5	0.9					<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	25	9					<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1145	0.1081						kg	NONE/PM17
Chloride #	<0.3	<0.3					<0.3	mg/l	TM38/PM0
Chloride #	<3	<3					<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09						kg	NONE/PM17
Ammoniacal Nitrogen as N#	<0.03	<0.03					<0.03	mg/l	TM38/PM0

Geosyntec Consulting Client Name:

Reference:

Location: Contact:

EMT Sample No.

M1 Business Park Stephen Coakley

21-24

EMT Job No:

23/10858

5-8

Report: CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

Sample ID	TP02	TP06					Please se abbrevia	6_	
Depth							Dlagga sa	e attached a	otes for all
COC No / misc							abbrevi	e attached n ations and a	nyms
Containers		VJTB							
Sample Date									
Sample Type		Soil							
Batch Number		1					LOD/LOR	Units	Method No.
Date of Receipt									
Ammoniacal Nitrogen as N#	<0.3	<0.3					<0.3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	<2					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20					<20	mg/kg	TM60/PM0
Total Dissolved Solids#	<35	41					<35	mg/l	TM20/PM0
Total Dissolved Solids #	<350	410					<350	mg/kg	TM20/PM0
		<u> </u>		<u> </u>					

EPH Interpretation Report

Client Name: Geosyntec Consulting

Reference: -

Location: M1 Business Park
Contact: Stephen Coakley

Matrix : Solid

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation No interpretation possible
23/10858	1	TP02		5-8	No interpretation possible
23/10858	1	TP06		21-24	No interpretation possible

Client Name: Geosyntec Consulting

Reference:

Location: M1 Business Park
Contact: Stephen Coakley

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative ampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/10858	1	TP02		8	Emily Anderton	14/07/2023	General Description (Bulk Analysis)	Beige soil with stones
					Emily Anderton	14/07/2023	Asbestos Fibres	NAD
					Emily Anderton	14/07/2023	Asbestos ACM	NAD
					Emily Anderton	14/07/2023	Asbestos Type	NAD
23/10858	1	TP06		24	Emily Anderton	14/07/2023	General Description (Bulk Analysis)	Brown soil with stones
					Emily Anderton	14/07/2023	Asbestos Fibres	NAD
					Emily Anderton	14/07/2023	Asbestos ACM	NAD
					Emily Anderton	14/07/2023	Asbestos Type	NAD

Client Name: Geosyntec Consulting

Reference:

Location: M1 Business Park **Contact:** Stephen Coakley

Notification of Deviating Samples

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/10858	20
						2
						×

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/10858

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

23/10858 EMT Job No.:

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact . 79/04/2024 the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

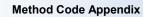
Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	ISO17025 (SANAS Ref No.T0729) accredited - South Africa Indicates analyte found in associated method blank. Dilution required. MCERTS accredited. Not applicable No Asbestos Detected.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED


HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Extractable Hydrocarbons - i.e. everything extracted by the solvent. Clean-up - e.g. by florisil, silica gel. GC - Single coil gas chromatography. Aliphatics & Aromatics. Aliphatics only.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			ZAR.	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

						A mala site at a ma	
Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			VAR.	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.	Yes		AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			WARD ON	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.			AR	Yes
TM108	Determination of Elemental Sulphur by Reversed Phase High Performance Liquid Chromatography with Ultra Violet spectroscopy.	PM114	End over end extraction of dried and crushed soil samples for organic analysis. The solvent mix varies depending on analysis required			AD	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	Offig	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			ON POS	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	7

S.I. Ltd Contract No: 6461A

Client: Vida M1 Limited

Engineer: Clifton Scannell Emerson Associates

Contractor: Site Investigations Ltd

M1 Business Park – Zone A, Balbriggan, Co. Dublin Site Investigation Report

Prepared by:	
•••••	
Stephen Letch	

Issue Date:	03/10/2023
Status	Final
Revision	0

Contents:		Page No.
1.	Introduction	TV.
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	4
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Rotary Corehole Log
- 3. Trial Pit Logs and Photographs
- 4. Slit Trench Logs and Photographs
- 5. Soakaway Test Results and Photographs
- 6. Insitu California Bearing Ratio Test Results
- 7. Geotechnical Laboratory Test Results
- 8. Environmental Laboratory Test Results
- 9. Waste Classification Report
- 10. Survey Data

1. Introduction

On the instructions of Clifton Scannell Emerson Associates, Site Investigation and (SIL) was appointed to complete a ground investigation at Balbriggan, Co. Dublin. The investigation was completed for the M1 Business Park, Zone A and F and this report covers Zone A. The investigation was completed on behalf of the Client, Vida M1 Limited and the fieldworks were started in July and completed in August 2023.

This final report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

The site is located to the south west of Balbriggan town centre adjacent to Junction 5 of the M1 motorway. The first map below shows the location of the site to the north of Dublin city centre and the second map shows Zone A in red and Zone F in green.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised of the following:

- 8 No. cable percussive boreholes
- 1 No. rotary corehole
- 6 No. trial pits
- 5 No. soakaway tests
- 5 No. California Bearing Ratio tests

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 8 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. The boreholes terminated at depths ranging from 7.00mbgl (BH08) to 9.80mbgl (BH04) after 1.5hrs chiselling with no further progress. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=6-(1,1/2,1,1,2)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 6.00mbgl where N=50-(7,14/50 for 225mm)).

At BH03, a groundwater monitoring standpipe was installed in the borehole and consisted of slotted pipe surrounded by a gravel response zone with bentonite seals. The standpipe cover was then fenced off for protection from machinery and livestock.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Rotary Corehole

Adjacent to BH06, a rotary corehole was drilled to investigate the depth of bedrock. The rotary drilling was carried out using a Beretta T25 top drive rig and open hole drilling techniques were used to advance through the overburden. The corehole reached the scheduled depth of 15.00mbgl and no bedrock was encountered in the corehole. The rotary corehole log is presented in Appendix 2.

3.3. Trial Pits

8 No. trial pits were excavated using a wheeled excavator. The pits were logged and photographed by a SIL geotechnical engineer and representative disturbed bulk samples were

recovered as the pits were excavated, which were returned to the laboratory for testing. Groundwater ingresses and pit wall stability were recorded as the pits were excayated and the NED. 79/08/2024 pits were backfilled with the arisings upon completion.

The trial pit logs and photographs are presented in Appendix 3.

3.4. Slit Trenches

Slit trenching was completed at 10 No. locations by hand digging with machine assistance where possible. The trenches were completed to check the location and depth of any services on site. The trenches were logged and the services photographed before they were backfilled with the arisings.

The slit trench logs and photographs are presented in Appendix 4.

3.5. Soakaway Tests

At 5 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results and photographs are presented in Appendix 5.

3.6. California Bearing Ratio tests

At 5 No. locations, undisturbed cylindrical mould samples were taken to complete California Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'.

The California Bearing Ratio test results are provided in Appendix 6.

3.7. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log along with a site plan in Appendix 10.

4. Laboratory Testing

4.1. Geotechnical Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance N. 70/04/2024 with BS 1377 (1990). Testing included:

- 6 No. Moisture contents
- 6 No. Atterberg limits
- 6 No. Particle size gradings with hydrometers
- 6 No. Remoulded CBR tests
- 6 No. Moisture Condition Value (MCV) tests
- 6 No. Compactions
- 6 No. pH, sulphate and chloride content tests

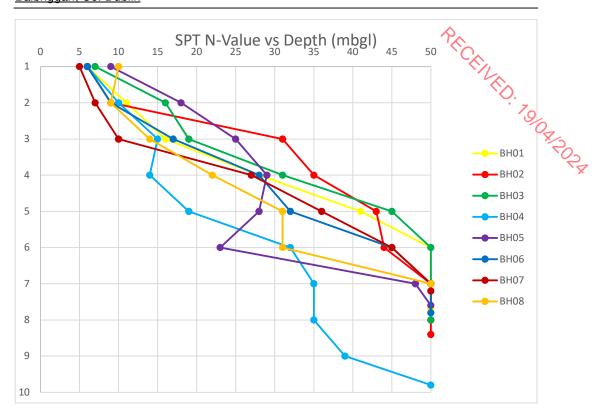
The geotechnical laboratory test results are presented in Appendix 7.

4.2. Environmental Testing

Environmental testing was completed by ALS Environmental Ltd. and this allows for a Waste Classification report to be produced. The environmental testing consists of the following:

- 6 No. Suite I analysis
- 6 No. loss on ignition tests

The environmental test results are presented in Appendix 8 with the Waste Classification report in Appendix 9.


5. Ground Conditions

5.1. Overburden

The natural ground conditions in the boreholes and trial pits are consistent with brown overlying black slightly sandy slightly gravelly silty CLAY with cobbles and boulders. No bedrock was recorded at the corehole when the hole was terminated at 15.00mbgl.

These natural soils are over-consolidated lodgment till which is encountered across the North Dublin region with several papers discussing the engineering characteristics of the soil. The brown and brown grey soils are the weathered surface of the underlying black clays and the gravel and cobbles are generally angular to subrounded and predominantly limestone in origin.

The SPT N-values generally range from 5 to 10 at 1.00mbgl and then these increase to between 7 to 18 at 2.00mbgl and then 10 to 31 at 3.00mbgl and the values continue to increase with depth. The graph overleaf shows SPT N-values vs depth.

Laboratory tests of the shallow cohesive soils recorded CLAY soils with low and intermediate plasticity indices of 14% to 17% recorded. The particle size distribution curves were poorly sorted straight-line curves with 39% to 53% fines content.

5.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater ingresses were recorded in three boreholes, with shallow strikes of 1.70mbgl and 1.80mbgl recorded in BH03 and BH07. The water was sealed off in BH07 at 2.80mbgl and water then re-entered the borehole at 3.80mbgl. A deeper groundwater strike was recorded in BH05 at 6.60mbgl.

There were water ingresses into 3 No. trial pits across the site, at depths of 1.60mbgl (TP04) to 2.20mbgl (TP02 and TP03) with ingresses logged as slow.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is

further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

The boreholes encountered soft to firm brown slightly sandy slightly gravelly silty CLAY at 1.00mbgl and the SPT N-value at this depth ranges from 5 to 10. Using a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices, the SPT N-value can be used to calculate the undrained shear strength. With the low to intermediate plasticity indexes recorded in the laboratory for the soils encountered on site, this correlation is C_u=6N. Therefore, this indicates that the undrained shear strength range of the CLAY is 30kN/m² to 60kN/m². This can be used to calculate the ultimate bearing capacity, and this has been calculated to range from 171kN/m² to 324kN/m². Finally, a factor of safety is applied and with a factor of 3, an allowable bearing capacity range of 57kN/m² to 108kN/m² would be anticipated in these soils.

The SPT test values increase to 7 to 18 at 2.00mbgl, indicating an undrained shear strength range of 42kN/m² to 108kN/m², ultimate bearing capacity range of 250kN/m² to 585kN/m² and an allowable bearing capacity range of 83kN/m² to 195kN/m².

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type (described above).
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.

- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.
- All founding strata to be inspected by a suitably qualified Engineer prior to pouring the 10/04/2024 foundations.
- All bearing capacity calculations allow for a settlement of 25mm.

The trial pits indicate that excavations in the cohesive soils should be stable but all slopes should be evaluated upon excavation and regular inspections should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was encountered in three boreholes and three trial pits.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium. If granular soils are encountered in shallow excavations, then the possibility of water ingressing into an excavation increase.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Tests

ED. 79/04/2024 The soakaway tests failed the specification as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e., well compacted clay soils.

6.4. Pavement Design

The CBR test results in Appendix 6 indicate CBR values ranging from 6.0% to 7.7% at 0.50mbgl and the remoulded CBR tests recorded values of 5.2% to 9.5% at 1.00mbgl.

The insitu CBR samples were recovered from 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.5. Contamination

Environmental testing was completed on six samples from the investigation and the results are presented in Appendix 8. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnlineTM software shows that the material tested can mainly be classified as non-hazardous material.

Following this analysis of the solid test results, the leachate disposal suite results showed that the determinands generally remained within the Inert waste thresholds.

Overall, six samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Aggressive Ground Conditions

The chemical test results in Appendix 7 indicate a general pH value between 7.93 and 8.30 which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was 124 mg/l as SO₃. The BRE Special Digest $1:2005 - \text{`}Concrete in Aggressive Ground'}$ guidelines require SO₄ values and after conversion (SO₄ = SO₃ x 1.2), the maximum value of 149 mg/l shows Class 1 conditions and no special precautions are required.

6.7. Radon Gas

The Environmental Protection Agency (EPA) has recently updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. The values are based on residential properties and the map overleaf shows that the site falls within the low level of 1 in 20 homes have a possibility of high radon exposure. Measures should be taken in the form of radon protection barriers from radon exposure in the new structure.

EPA map identifying possible Radon exposure. https://gis.epa.ie/EPAMaps/Radon?&lid=EPA:RadonRiskMapoflreland

PRICEINED. 7000 PORTOR

Appendix 1 Cable Percussive Borehole Logs

Contract No: 6161A	Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole No:
Contract:	M1 Business Park - Zone A	Easting	j :	718270	0.062		Date Started:	19/07	7/2023
Location:	Balbriggan, Co. Dublin	Northin	ıg:	758944	1.563		Date Completed:	19/07	7/2023
Client:	Vida M1 Limited	Elevation	on:	39.27			Drilled By:	G. Ma	acken
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	ı		Status:	FINA	L
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike
Scale Depth	TOPSOIL.	\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Scale	Depth	Depth	Туре	Result		
0.30	Soft brown grey slightly sandy slightly gravelly silty CLAY with low cobble content.	× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	39.0	38.97					
1.0			38.5 - - - - 38.0 -	- - - - -	1.00 1.00	B C	GM15 N=6 (1,1/2,1		
1.5 - 1.60	Firm becoming stiff becoming very stiff black slightly sandy slightly gravelly silty CLAY with high cobble	8 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	37.5	37.67	0.00	Б	01440		
2.0 —	content.	× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	37.0	-	2.00	B C	GM16 N=11 (2,2/2,		
3.0 —			36.5 - - - 36.0 -	-	3.00 3.00	B C	GM17 N=16 (2,3/3,		
3.5 —		**************************************	35.5	- - - -		_			
4.0 —		x x o f	35.0		4.00 4.00	B C	GM18 N=28 (3,5/8,		
5.0			34.5		5.00 5.00	B C	GM19 N=41 (3,8/10,10,1		
6.0			33.5 -	-	6.00 6.00	B C	GM20 50 (7,14/50 225mm		
7.0			32.5 - - - - 32.0 -		7.00 7.00	B C	GM21 50 (8,13/50 200mm		
7.5 — 7.60 — 7.70 8.0 —	Obstruction - boulders. End of Borehole at 7.70m		31.5 -	31.67 31.57	7.70	С	50 (25 fo 5mm/50 for		
8.5			31.0						
9.0 —			30.5						
9.5			30.0	-					
=			29.5						
(A)	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Dep	Install From: To	lation: o: Pipe		l Backfill: To: ⊤yp	De. D	Remarks:	d due	Legend: B: Bulk
	From: 10:	i ioiii.	o. ripe	0.00 7			orenoie terminated obstruction.	u uue	D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

Contract No: 6161A	Cable Percussion	n Bo	orel	nole	Log]		В	orehole No:
Contract:	M1 Business Park - Zone A	Easting	j:	718317	7.392		Date Started:	20/07	7/2023
Location:	Balbriggan, Co. Dublin	Northin	ıg:	758955	5.904	•	Date Completed:	20/07	7/2023
Client:	Vida M1 Limited	Elevati	on:	38.61			Drilled By:	G. Ma	acken
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	า		Status:	FINA	L
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water Strike
Scale Depth	TOPSOIL.	\(\/\.\\\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\	Scale	Depth	Depth	Туре	Result		Service
0.20	Soft brown grey slightly sandy slightly gravelly silty CLAY with low cobble content.	× × 0 × × 0	38.5	38.41					
1.0			37.5 —		1.00 1.00	ВС	GM22 N=6 (1,1/1,2		
1.5 - 1.40	Firm becoming very stiff black slightly sandy gravelly silty CLAY with medium cobble content.	2 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	37.0	37.21	2.00	Б	CM22		
2.0 —			36.5	-	2.00	B C	GM23 N=9 (1,2/2,2		
3.0 —		× × · · ×	35.5	- - - -	3.00 3.00	ВС	GM24 N=31 (3,5/8,		
3.5		**************************************	35.0 —	- - - - - -					
4.0 —		× × · · · ×	34.5 -	34.11	4.00 4.00	B C	GM25 N=35 (3,7/9,8,8,		
5.0	Dense black silty sandy GRAVEL with high cobble content.		34.0 — - - - - 33.5 —	-	5.00 5.00	ВС	GM26 N=43		
5.5			33.0		0.00	O	(5,8/10,12,1	0,11)	
6.0 -		** × ***	32.5 —	-	6.00 6.00	B C	GM27 N=44 (7,9/9,11,1	1,13)	
7.0			32.0 — - - - 31.5 —	-	7.00 7.00	ВС	GM28 N=50 (8,10/		
7.5 —			31.0		7.00	C	255mm		
8.0 — - - - 8.30 8.5 — 8.40	Obstruction - boulders.	× × ×	30.5	30.31	8.00 8.00 8.40	B C C	GM29 N=50 (4,6/5 265mm	50 for i)	
9.0	End of Borehole at 8.40m		30.0	- 00.21			50 (25 fo 5mm/50 for		
9.5			29.5 — - - - 29.0 —	-					
-			_						
\$	Chiselling: Water Strikes: Water Details:	Install From: To			Backfill: To: Type 3.40 Arisin		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

Contract No: 6161A	Cable Percussion	n Bo	orel	nole	Log	g		В	orehole No:
Contract:	M1 Business Park - Zone A	Easting	j :	718149	9.632		Date Started:	18/07	7/2023
Location:	Balbriggan, Co. Dublin	Northin	g:	758957	7.492		Date Completed:	18/07	7/2023
Client:	Vida M1 Limited	Elevation	on:	42.51			Drilled By:	G. Ma	acken
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	1		Status:	FINA	L
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water Strike
Scale Depth	TOPSOIL.	X//XXV//X	Scale	Depth	Depth	Type	Result		On the second
0.20	Soft brown grey slightly sandy slightly gravelly silty CLAY with low cobble content.		42.0	42.31					X
1.0 -			41.5		1.00 1.00	B C	GM08 N=7 (1,1/2,2		
2.0 — 1.80	Firm becoming stiff becoming very stiff black slightly sandy slightly gravelly silty CLAY with high cobble content.		40.5 -	40.71	2.00 2.00	B C	GM09 N=16 (2,3/4,		
3.0			39.5 -		3.00 3.00	B C	GM10 N=19 (3,3/4,		
4.0 —			38.5 -		4.00 4.00	B C	GM11 N=31 (3,5/5,	8,9,9)	
5.0 —			37.5 -		5.00 5.00	B C	GM12 N=45 (4,8/10,10,1		
6.5			36.5		6.00 6.00	B C	GM13 50 (8,13/50 225mm		
7.0 —		X X 0 X X 0 X X X 0 X X X 0 X X X 0 X X X X 0 X	35.5 — 35.0 —		7.00 7.00	ВС	GM14 50 (7,14/50 150mm		
8.0 - 7.80	Obstruction - boulders. End of Borehole at 8.00m		34.5	34.71 34.51	8.00	С	50 (25 fo 5mm/50 for	or 5mm)	
8.5 -			34.0						
9.0 —			33.5						
				Ļ					
\$	Coaled Beptil. Beptil.	Install From: To 0.00 1.5 1.50 8.0	o: Pipe	e: From: -	Backfill: To: Typ .00 Bento 3.00 Grav	nite to	Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

Contract No: 6161A	Cable Percussio	n Bo	orel	nole	Log	J		В	orehole No:
Contract:	M1 Business Park - Zone A	Easting	j:	718433	3.018		Date Started:	02/08	/2023
Location:	Balbriggan, Co. Dublin	Northin	g:	758945	5.877	•	Date Completed:	02/08	3/2023
Client:	Vida M1 Limited	Elevation	on:	38.01			Drilled By:	D. Cla	arke
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	1		Status:	FINA	L
Depth (m) Scale Depth	Stratum Description	Legend		(mOD)		-	and Insitu Tes	ts	Water Strike
Scale Depth – 0.10	TOPSOIL.	\(\/\.\\\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\	Scale	37.91	Берит	Туре	Result		70 11501150
0.10	Soft grey brown slightly sandy slightly gravelly silty CLAY with high cobble content.		37.5 —	37.91					
1.0			37.0	20.54	1.00 1.00	B C	DC01 N=6 (1,1/1,2	2,2,1)	
1.5 — 1.50	Firm dark grey brown slightly sandy slightly gravelly silty CLAY with low cobble content.		36.5 - - - - 36.0 -	36.51	2.00	В	DC02	2 2 2)	
2.5 = 2.70	Firm grey brown slightly sandy slightly gravelly silty		35.5 —	35.31	2.00	С	N=10 (1,2/2,	ა,ა,∠)	
3.0	CLAY with high cobble content.	\$ \lambda \cdot \c	35.0 — - - - 34.5 —		3.00 3.00	B C	DC03 N=15 (2,2/3,	4,4,4)	
4.0			34.0	- - - - - - - -	4.00 4.00	ВС	DC04 N=14 (2,2/4,	4,3,3)	
5.0 5.00			33.5 -	33.01	5.00	В	DC05		
5.5 = 5.60	Stiff black slightly sandy slightly gravelly silty CLAY with low cobble content. Very stiff black slightly sandy slightly gravelly silty		32.5 -	32.41	5.00	С	N=19 (2,2/3,	3,6,7)	
6.0	CLÁY with high cobble content.		32.0 — 	-	6.00 6.00	B C	DC06 N=32 (5,7/7,	8,8,9)	
7.0 —			31.0 — 		7.00 7.00	ВС	DC07 N=35 (7,7/8,8,9,	10)	
8.0 — - - - - - - - 8.5 —			30.0 —		8.00 8.00	ВС	DC08 N=35 (5,8/9,	9,8,9)	
9.0 —			29.0	-	9.00 9.00	ВС	DC09 N=39 (8,8/9,9,10),11)	
9.5 — — 9.70 — 9.80	Obstruction - boulders. End of Borehole at 9.80m		28.5 - - - -	28.31 28.21	9.80	С	50 (25 fo		
								,	
\$	Chiselling: Water Strikes: Water Details:	Install From: To		_	Backfill: To: Type 0.80 Arisin		Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

Contract No: 6161A	Cable Percussion	n Bo	orel	nole	Log	3		Во	orehole No:
Contract:	M1 Business Park - Zone A	Easting	J:	718027	7.659		Date Started:	21/07	/2023
Location:	Balbriggan, Co. Dublin	Northin	g:	75879 ²	1.222		Date Completed:	21/07	/2023
Client:	Vida M1 Limited	Elevation	on:	52.61			Drilled By:	G. Ma	acken
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	1		Status:	FINA	-
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water Strike
Scale Depth	TOPSOIL.	X//XX//X	Scale 52.5 -	Depth	Depth	Туре	Result		
0.30	Firm brown grey slightly sandy slightly gravelly silty CLAY with low cobble content.	*	52.5 — - - - 52.0 —	52.31					
1.0 - 1.50			51.5 -	51.11	1.00 1.00	B C	GM30 N=9 (1,2/2,2		
2.0	Stiff black slightly sandy gravelly silty CLAY with medium cobble content.		51.0	51.11	2.00 2.00	B C	GM31 N=18 (3,2/2,		
2.5 —			50.0		3.00 3.00	ВС	GM32 N=25 (3,5/6,		
3.5 —			49.0 — 		4.00	В	GM33		
4.5			48.0	-	4.00	С	N=29 (4,6/6,		
5.0 — 5.40	Very stiff black slightly sandy gravelly silty CLAY with high cobble content.		47.5 — - - - 47.0 —	47.21	5.00 5.00	B C	GM34 N=28 (3,5/7,		
6.0 —		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46.5 -		6.00 6.00	B C	GM35 N=23 (3,4/4,		
7.0 —		× 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	45.5 – - 45.5 –	45.11	7.00 7.00	B C	GM36 N=48 (4,8/11,12,1		
7.60	Obstruction - boulders. End of Borehole at 7.60m		45.0 — - - - 44.5 —	45.01	7.60	С	50 (25 fo 5mm/50 for		3//>//
8.5 —			44.0	-					
9.0 -			43.5						
9.5 —			43.0						
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: Depth Depth: Popph: Popph:	Install From: To		-	Backfill: To: Typ 7.60 Arisir		Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

Contract No: 6161A	Cable Percussion	n Bo	orel	nole	Log			В	orehole No:
Contract:	M1 Business Park - Zone A	Easting	J :	718153	3.144		Date Started:	17/07	7/2023
Location:	Balbriggan, Co. Dublin	Northin	g:	758744	1.248	,	Date Completed:	17/07	7/2023
Client:	Vida M1 Limited	Elevati	on:	47.46			Drilled By:	G. Ma	acken
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	1		Status:	FINA	L
Depth (m) Scale Depth	Stratum Description	Legend	Level Scale	(mOD)		oles	and Insitu Tes		Water Strike
0.30	TOPSOIL. Brown sandy slightly gravelly silty CLAY with low cobble content.	0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	47.0 —	47.16	Берит	уре	Result		0
1.5	Soft becoming firm brown grey slightly sandy slightly gravelly silty CLAY with low cobble content.	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	46.5 - 46.0 -	46.56	1.00 1.00	B C	GM01 N=6 (1,1/1,2	2,2,1)	
2.0 —			45.5 — 45.0 —	44.96	2.00 2.00	ВС	GM02 N=9 (2,2/1,3		
3.0	Stiff becoming very stiff black slightly sandy slightly gravelly silty CLAY with high cobble content.	X X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	44.5 — 44.0 —		3.00 3.00	B C	GM03 N=17 (2,3/4,		
4.0 —		x	43.5 — 43.0 —		4.00 4.00	B C	GM04 N=28 (5,6/6,		
5.0 —		X X 0 X X 0 X X 0 X X 0 X X 0 X X 0 X X 0 X X 0 X X 0 X X 0 X X 0 X X X 0 X X X 0 X	42.5 - 42.0 - 42.0 -		5.00 5.00	B C	GM05 N=32 (7,7/7,		
6.0 —			41.5		6.00 6.00	B C	GM06 N=45 (8,10/11,10,7	12,12)	
7.0 —		X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	40.5		7.00 7.00	B C	GM07 50 (7,11/50 125mm) for	
7.70 7.80	Obstruction - boulders. End of Borehole at 7.80m	0 0	39.5 —	39.76 39.66	7.80	С	50 (25 fo 5mm/50 for		
9.0			39.0						
9.5			38.0						
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Details: 7.70 7.80 01:30 17/07 7.80 Dry	Install			Backfill: To: Type: 7.80 Arising:		Remarks: prehole terminated obstruction.	d due	Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

Contra		Cable Percussion	n Bo	rel	nole	Log			В	orehole BH0	
Contrac	ot:	M1 Business Park - Zone A	Easting	:	718162	2.225	[Date Started:	27/07	/2023	
Locatio	n:	Balbriggan, Co. Dublin	Northin	g:	758597	7.357		Date Completed:	27/07	//2023	
Client:		Vida M1 Limited	Elevation	on:	50.75		[Orilled By:	G. Ma	acken	
Engine	er:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	1	5	Status:	FINA	L	
Depti Scale	n (m) Depth	Stratum Description	Legend	Level	(mOD)			and Insitu Tes Result	ts	Water Strike	Backfill
Scale		TOPSOIL.		Scale		Берип	Гуре	Result		2 0-	
0.5	0.20	Brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× × · · · ×	50.5	50.55					-	
1.0 —	0.80	Soft light brown slightly sandy slightly gravelly silty CLAY with high cobble content.		50.0 —	49.95	1.00	ВС	GM43 N=5 (1,1/1,1	1,2,1)		
1.5			× 0 × X	49.5 — - -					, , ,		
2.0			**************************************	49.0 —		2.00	В	GM44			
2.5	2.20	Firm becoming stiff brown black slightly sandy slightly gravelly silty CLAY with medium cobble content.		48.5 — - -	48.55	2.00	С	N=7 (1,2/2,1	1,2,2)		
3.0			**************************************	48.0		3.00	В	GM45			
3.5			X 0 X 0 X	47.5		3.00	С	N=10 (1,2/2,	2,3,3)		
	3.80	Very dense dark grey silty sandy GRAVEL with	× × × ×	47.0	46.95		_				
4.0 —		medium cobble content and bands of sandy gravelly clay.	***	46.5		4.00 4.00	B C	GM46 N=27 (2,3/5,	7,7,8)		
4.5 —			× × 1	46.0							
5.0				45.5 —		5.00 5.00	B C	GM47 N=36 (3,6/9,8,8,	11)		
5.5 —			× * * * * * * * * * * * * * * * * * * *	45.0				(0,0/0,0,0,	11)		
6.0			が ※ × パ	- - - 44.5 –		6.00 6.00	B C	GM48 N=45			
6.5			× × ×	44.0				(5,7/8,13,12	2,12)		
7.0	7.10	Obstruction - boulders.	X X 3	43.5	43.65 43.55	7.00 7.00	ВС	GM49 50 (25 fc	or		
7.5	7.20	End of Borehole at 7.20m		-	43.33	7.20	С	85mm/50 15mm) 50 (25 fc			
8.0 —				43.0 —				5mm/50 for			
8.5 —				42.5 — - -							
9.0				42.0							
9.5				41.5							
				41.0							
		Chicalling: Mater Otalica. Mater Det 1	 	otics	<u> </u>	Dool-fill		DamaI		Logon -	
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Sealed seal	Install From: To			Backfill: To: Type Arising		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Contract No: 6161A	Cable Percussion	n Bo	orel	nole	Log	3		В	orehole No:
Contract:	M1 Business Park - Zone A	Easting	J:	717972	2.469		Date Started:	24/07	7/2023
Location:	Balbriggan, Co. Dublin	Northin	g:	758566	6.068		Date Completed:	24/07	7/2023
Client:	Vida M1 Limited	Elevation	on:	51.77			Drilled By:	G. Ma	acken
Engineer:	Clifton Scannell Emerson Associates	Boreho Diamet		200mm	1		Status:	FINA	L
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike
Scale Depth	TOPSOIL.		Scale -	Depth	Depth	Туре	Result		70-1
0.20	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.	X X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	51.5 — - - - 51.0 —	51.57					
1.0 -		× × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · · × · · · · × · · · · × · · · · · × · · · · · × · · · · · × · · · · · · × ·	50.5		1.00 1.00	B C	GM37 N=10 (1,2/3,		
2.0		× × · · × · · × · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · · × · · · · × · · · · × · · · · × · · · · · × · · · · · × · · · · · × · · · · · · × · · · · · · · × ·	50.0		2.00	ВС	GM38 N=9 (2,2/2,3		
2.30	Firm grey brown slightly sandy slightly gravelly silty CLAY with low cobble content.	× × · · · ×	49.5 -	49.47	2.00	Ü	(2,2/2,0	J,_,_,	
3.0		X	48.5 —		3.00 3.00	B C	GM39 N=14 (2,2/3,		
4.0 — 4.20			48.0	47.57	4.00 4.00	B C	GM40 N=22 (3,4/5,		
4.5	Stiff becoming very stiff black slightly sandy slightly gravelly silty CLAY with medium cobble content.		47.5 — - - 47.0 —				(3, 13,	, , , ,	
5.0 —		X X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	46.5 — 46.5 — 		5.00 5.00	B C	GM41 N=31 (3,5/7,	8,8,8)	
6.0 —		X X X	46.0 — - - - - 45.5 —		6.00 6.00	B C	GM42 N=31 (3,4/5,		
7.0 - 6.90 7.00	Obstruction - boulders. End of Borehole at 7.00m		45.0 — 	44.87 44.77	7.00	С	50 (25 fo 5mm/50 for		
7.5			44.0						
8.5			43.5						
9.0 —			43.0						
9.5			42.5						
\$	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: Water Depth: Water Depth: Water Depth: 1 6.90 7.00 01:30 24/07 7.00 Dry 24/07 7.00 Dry 24/07	Install From: To			Backfill: To: Type 0.00 Arisin		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturbed U: Undisturbed ES: Environmental W: Water C: Cone SPT S: Split spoon SPT

PRICEINED. 70 OARORA

Appendix 2 Rotary Corehole Log

Contract N 6161A	Rotary Core	ehc	ole	L	og			Corehole RC0	
Contract:	M1 Business Park - Zone A	Easti	ng:	7	18153.353	Date Starte	d: 03	3/08/2023	
Location:	Balbriggan, Co. Dublin	North	ing:	7		Date Completed:	04	1/08/2023	
Client:	Vida M1 Limited	Eleva	tion:	4	10.74	Drilled By:	G.	. Macken	
Engineer:	Clifton Scannell Emerson Associates	Rig T	ype:	E	Beratta T25	Status:	O _{FJ}	NAL	
Depth (m)	Stratum Description	Legend	Le\ (mC	DD)	Samples	R TCR/% S	lock In	9	Backfill
Scale Depth	Open hole drilling: Driller reports returns of brown slightly sandy slightly gravelly silty CLAY with cobbles.	× 0 0	Scale	Бер	tn	TCR/% S	CR/% F	QD/% Film	
0.5	Sality Signity gravelly slity GLAT with cobbles.	**************************************	40.0						
1.0		× × ×	39.5						
1.5		<u> </u>	39.0						
2.0 -		20 20 0 0 20 0 20 00 0	38.5						
2.5 = 2.60	Open hole drilling: Driller reports returns of black slightly sandy	× - 0 - 0	38.0	38.1	4				
3.0 =	slightly gravelly silty CLAY with cobbles.	× × 0	37.5						
3.5			37.0						
4.0 =		× ^ (36.5						
4.5		× × ×	36.0						
5.0		3 × 0	3						
5.5		× 0 × 0	35.5						
6.0		0 × 0	35.0						
6.5		×	34.5						
7.0		0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	34.0						
7.5		<u>× × , </u>	33.5						
]			33.0						
8.0		8	32.5						
8.5		× × 0	32.0						
9.0		× × ×	31.5		N=48 (7,8/10,12,12	2,14)			
9.5		8 0 × 0	31.0						
10.0		0 X 0	30.5						
10.5		X	30.0		N=50 (9,10/50 fo 245mm)	or			
11.0		0 × 0	29.5		24011111)				
11.5		× × 0	29.0						
12.0		× 0 × 0]		50 (10,12/50 for	r			
12.5		**************************************	28.5		175mm)				
13.0		× 0.2	28.0 —						
13.5		× × 0	27.5		50 (25 for 135mm	/50			
14.00	Open halo drillings Deiller reports returns of the control of the	2 % (27.0	26.7	for 150mm)				
14.5	Open hole drilling: Driller reports returns of brown slightly sandy slightly gravelly silty CLAY with cobbles.	× 0 × 0	26.5						
15.00	_	×	26.0	25.7	4 50 (25 for 105mm	/50			
15.5	End of Corehole at 15.00m		25.5	20.7	for 100mm)				
			25.0						
	Installation: Backfill: F	l Remar	ks:						
	From: To: Pipe Type: From: To: Type: -		•						
	0.00 15.00 Arisings								

PRICEINED. 7000 POR ROLD

Appendix 3 Trial Pit Logs and Photographs

	act No: I61A	Tria	al Pit Lo	g						Trial Pit	
Contr	act:	M1 Business Park - Zone A	Easting	j :	718038	.629		Date:		03/07/2023	
Locat	ion:	Balbriggan, Co. Dublin	Northin	g:	758873	.192		Excavator	·:	3CX	
Client	t:	Vida M1 Limited	Elevati	on:	54.17			Logged B	у:	D. Monagha	an
Engin	eer:	Clifton Scannell Emerson Associates	Dimens (LxWxI		3.00 x	0.90 x	2.50	Status:	S	FINAL	
	(mbgl)	Stratum Description			Legend	Level				Field Tests	Water Strike
Scale:	1.70	Firm becoming stiff brown slightly sandy slightly with low cobble content. Sand is fine to coarse coarse, angular to subrounded of limestone. Cosubrounded of limestone. Stiff black slightly sandy slightly gravelly silty Content. Sand is fine to coarse. Gravel is fine to subrounded of limestone. Cobbles are angular limestone.	LAY with low coto coarse, angula	ar to		Scale:	53.87 52.47	0.50	ES B	DM02	
		Obstruction - Pit walls stable.	undwater Rate:	Remar	rks:	_		Key:		disturbed ill disturbed	
6		boulders.						= Unc	disturbed CBF onmental	₹	

	act No: I61A			Trial Pi	t Log	3						Trial Pi	
Contr	act:	M1 Business Park	- Zone A		Easting:		718233	3.569		Date:		03/07/2023	
Locat	ion:	Balbriggan, Co. Du	blin		Northing:	:	758871	.608		Excavato	r:	3CX	
Client	t:	Vida M1 Limited			Elevation	1:	44.53			Logged B	v:	D. Monagh	an
Engin	eer:	Clifton Scannell En	nerson Associates		Dimensio (LxWxD)		3.00 x	0.90 x	2.70	Status:	S	FINAL	
	(mbgl) Depth		Stratum Descrip	tion		L	Legend	Level Scale:	(mOD)			Field Tests	Water Strike
Scale:		TOPSOIL.						44.5 –	Deptin	. Берит	Тур	e Result	3
1.0 —	1.20	Firm brown sandy slig Gravel is fine to coar Firm light brown slight cobble content. Sand angular to subrounde subrounded of limes: Stiff black slightly sand content. Sand is fine subrounded of limes: limestone.	htly sandy slightly grad is fine to coarse. Ged of limestone. Cobtone. Indy slightly gravelly sto coarse. Gravel is tone. Cobbles are ar	avelly silty CLA ravel is fine to obles are angular silty CLAY with fine to coarse, ngular to subrou	Y with low coarse, ar to	V PACING CANCEL		44.0 —	43.93	0.50	ES B	DM05	
_			Pit terminated at 2.7	urn				-					
		Termination:	Pit Wall Stability:	Groundwater	Rate: R	emar	ks:			Key:			
	§)	Obstruction - boulders.	Pit walls stable.	2.20 Slow	-						Sma Und=	disturbed all disturbed disturbed CB onmental	₹

	act No:		7	Trial Pit	Log								Trial Pit I	
Contra	act:	M1 Business Park - Zone	e A	E	Easting:		718176	.142		Date:		03/0	7/2023	
Locat	ion:	Balbriggan, Co. Dublin		1	Northing:		758807	.603		Excavato	r:	3СХ		
Client	:	Vida M1 Limited		E	Elevation:		45.92			Logged F	y:	D. M	lonaghar	n
Engin	eer:	Clifton Scannell Emersor	n Associates		Dimension LxWxD) (i		3.00 x	0.90 x	2.50	Status:	(O	FINA	\L	
	(mbgl)	S	tratum Descripti		, ,	<u> </u>	.egend	Level					ests	Water Strike
Scale:	Depth	TOPSOIL.						Scale:	Depth	: Depth	Тур	е	Result)
0.5 —		Firm light brown slightly sa cobble content. Sand is fir angular to subrounded of l subrounded of limestone.	ne to coarse. Gra	avel is fine to c	oarse,		सारी प्रविभागी प्रविभागी प्रविभागी प्रविभागी वार्या वार्या वार्या वार्या वार्या वार्या वार्या वार्या वार्या वार्या	45.5 — 45.5 — 45.0 —	45.62	0.50	ES	3	DM07	× .
1.0 —		Stiff black slightly sandy sl content. Sand is fine to co subrounded of limestone.	arse. Gravel is f	fine to coarse, a	angular to			-	44.72	1.00	В		DM08	
1.5 —		limestone.						44.5 —						
2.0 —								- 43.5 —		2.00	В		DM09	•
2.5 —	2.50	Р	Pit terminated at 2.50)m			<u> </u>	=	43.42	!				
_								43.0 —						
		Termination: Pit V	Wall Stability:	Groundwater	Rate: Re	mark	KS:		<u> </u>	Key:				
	§)	Obstruction - Pit v boulders.	walls stable.	2.20 Slow	-					B = D = CBR ES =	Sma = Und	ıll dis listurl	irbed turbed bed CBR ental	

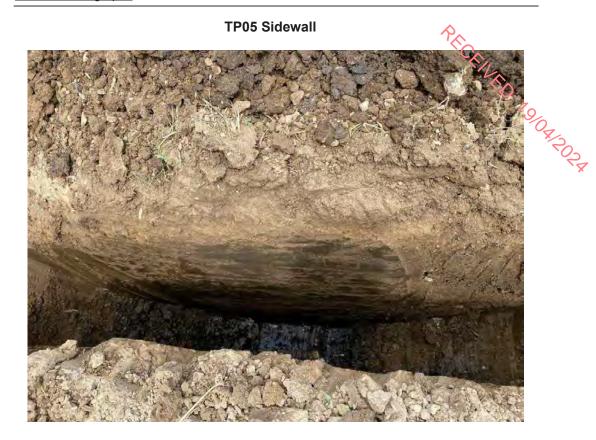
	act No: I61A			Trial Pit	t Lo	g						Trial Pit No: TP04		
Contr	act:	M1 Business Park -	- Zone A		Easting:		718217	'.971		Date:		03/07/	2023	
Locat	ion:	Balbriggan, Co. Du	blin		Northing	:	758767	'.433		Excavato	r:	3CX		
Client	t:	Vida M1 Limited			Elevation	า:	48.99			Logged F	ogged By: D. Monaghan			
Engin	eer:	Clifton Scannell Em	nerson Associates		Dimension (LxWxD)		3.00 x	0.90 x	2.70	Status:	tus: FINAL			
	(mbgl) Depth		Stratum Descript	tion		ı	Legend	Level Scale:			les / I	Field	ests esult	Water Strike
1.0 —	0.30	Firm light brown slight cobble content. Sand angular to subroundes subrounded of limest content. Sand is fine subrounded of limest limestone.	d is fine to coarse. Goed of limestone. Cobtone. Individual slightly gravelly stocoarse. Gravel is	silty CLAY with fine to coarse, ngular to subrou	coarse, ar to low cobb angular t			48.5 — 48.0 — 47.5 — 47.0 — 46.5 —	48.69	1.00	ESS B	6 0	0M10	
		Termination:	Pit Wall Stability:	Groundwater	Rate: F	Remar	·ks:			Key:				
		Obstruction -	Pit walls stable.	1.60 Slow	-					B = D =		disturb		
6		boulders.								CBR	= Und		d CBR	

Contract No: 6161A Trial Pit Log												Trial Pit No: TP05		
Contr	act:	M1 Business Park - Zone	4	I	Easting:	71	18164	.432		Date:		03/07/	2023	
Locat	ion:	Balbriggan, Co. Dublin		I	Northing:	75	58683	.626		Excavato	r:	3CX		
Client	t:	Vida M1 Limited		I	Elevation:	46	6.89			Logged B	gged By: D. Monaghan			
Engin	eer:	Clifton Scannell Emerson	Associates		Dimension (LxWxD) (ı		.00 x	0.90 x	1.80	Status:	atus: FINAL			
	(mbgl) Depth	Stra	atum Descripti	on		Leg	gend	Level Scale:			les /	Field	ests	Water Strike
1.0 —	0.30	Firm light brown slightly san cobble content. Sand is fine angular to subrounded of linesubrounded of limestone. Stiff black slightly sandy slig content. Sand is fine to coar subrounded of limestone. Cimestone. Pit of the standard stan	to coarse. Granestone. Cobb	avel is fine to colles are angula lilty CLAY with line to coarse, angular to subrou	low cobble angular to	8-		46.5 — 46.0 — 45.5 — 45.0 — 44.5 — 44.0 —	45.29 45.09	1.00	B		M13	
		Termination: Pit Wa	all Stability:	Groundwater	Rate: Re	marks:	:			Key:	ı			
		Obstruction - Pit was boulders.	alls stable.	Dry	-						Sma Unc	disturb III distur Iisturbe onment	bed d CBR	

	act No: I61A		•	Trial Pi	t Lo	g						Trial Pit No: TP06		
Contr	act:	M1 Business Park -	Zone A		Easting	:	718026	5.098		Date:		03/07/2023	3	
Locat	ion:	Balbriggan, Co. Dub	olin		Northin	g:	758700	.135		Excavator	r:	3CX		
Client	t:	Vida M1 Limited			Elevatio	n:	52.38			Logged B	ogged By: D. Monaghan			
Engin	eer:	Clifton Scannell Em	erson Associates		Dimens (LxWxD		3.00 x	0.90 x	2.20	Status:	us: FINAL			
	(mbgl)		Stratum Descript	ion		ı	Legend	Level				Field Tests	Water Strike	
Scale:	1.30	Firm light brown sligh cobble content. Sand angular to subrounde subrounded of limeston subrounded subrounde	tly sandy slightly gra is fine to coarse. Gr d of limestone. Cobb one. dy slightly gravelly s to coarse. Gravel is	ivelly silty CLA avel is fine to o oles are angula ilty CLAY with fine to coarse, gular to subrou	low cob	ble to		Scale:	52.08 51.08	0.50	ES B	DM15	Strike	
-								49.5 —	-					
	B	Termination:	Pit Wall Stability:	Groundwater	Rate:	Remar	ks:			Key:	D. II	diotumb		
		Obstruction - boulders.	Pit walls stable.	Dry		-					Sma Und=	disturbed all disturbed disturbed CB onmental	R	

TP01 Spoil

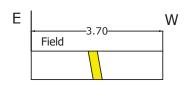
TP02 Spoil


TP03 Spoil

TP04 Spoil

TP05 Spoil

TP06 Spoil



PRICEINED. 7000 PORTOR

Appendix 4 Slit Trench Logs and Photographs

ST01

<u>Plan</u>

Cross Section

Services

No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
1	250mm	Yellow	Gas	1.80m	2.30m	80°

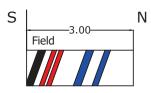
Ground Conditions

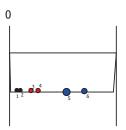
From:	To:	Description:					
0.00m	0.30m	TOPSOIL.					
0.30m	0.80m	Firm brown grey slightly sandy slightly gravelly silty CLAY with high cobble content.					
0.80m	1.90m	Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble content and occasional gravel laminas.					
Clicht	Clight water connects at 0.00mhgl, medium water ingress at 1.60mhgl						

Slight water seepages at 0.90mbgl, medium water ingress at 1.60mbgl.

Trench Dimensions

Point:	Easting:	Northing:	Level:
Start	718088.835	758981.316	46.01
Gas Main	718086.829	758981.560	44.31
End	718084.890	758981.646	46.42


Length:	Width:	Depth:
3.70m	3.20m	1.90m


	Project:	M1 Business Park - Zone A	Logged by: M.Kaliski	Excavation Started: 25/07/2023		tion Finished: '07/2023	CONTRACT NUMBER	
\mathbb{D}	Client:	Vida M1 Limited	Scale: NOT TO SCALE	, ALL DISTANCES I	IN m	61	611	
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO 1	THE TOP OF SERVI	CES	UT	OTH	l

ST02

<u>Plan</u>

Cross Section

Services

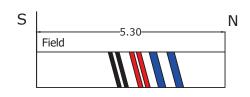
No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
1	100mm	Grey	Telecom	0.20m	1.00m	110°
2	100mm	Grey	Telecom	0.30m	1.00m	110°
3	120mm	Red	ESB	0.60m	1.00m	110°
4	120mm	Red	ESB	0.80m	1.00m	110°
5	200mm	Blue	Water	1.60m	1.00m	110°
6	150mm	Blue	Water	2.10m	1.00m	110°

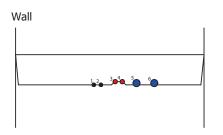
Ground Conditions

From:	To:	Description:
0.00m	0.30m	TOPSOIL.
0.30m	0.90m	MADE GROUND: brown slightly sandy slightly gravelly silty clay.
0.90m	1.00m	MADE GROUND: light brown sand.

Trench Dimensions

Point:	Easting:	Northing:	Level:
Start	718164.797	759008.024	43.17
End	718164.677	759004.658	43.06


Length:	Width:	Depth:
3.00m	0.65m	0.35m


	Project:	M1 Business Park - Zone A		Excavation Started: 04/07/2023	Excavation Finished: 04/07/2023		CONTRACT NUMBER	
TD	Client:	Vida M1 Limited	ted Scale: NOT TO SCALE, ALL DISTANCES IN m		N m	61611		
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO THE TOP OF SERVICES			ΟŢ	OTA	

ST03

Plan

Cross Section

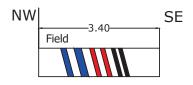
Services

No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
1	100mm	Grey	Telecom	2.20m	0.80m	75°
2	100mm	Grey	Telecom	2.40m	0.80m	75°
3	120mm	Red	ESB	2.80m	0.70m	75°
4	120mm	Red	ESB	3.00m	0.70m	75°
5	200mm	Blue	Water	3.40m	0.70m	75°
6	200mm	Blue	Water	3.90m	0.70m	75°

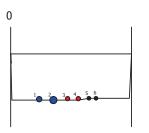
Ground Conditions

From:	To:	Description:
0.00m	0.30m	TOPSOIL.
0.30m	0.60m	MADE GROUND: brown slightly sandy slightly gravelly silty clay.
0.60m	0.80m	MADE GROUND: light brown sand.

Trench Dimensions


Point:	Easting:	Northing:	Level:
Start	718298.417	758978.657	45.94
End	718297.323	758975.252	45.99

Length:	Width:	Depth:			
5.50m	0.50m	0.80m			



	Project:	M1 Business Park - Zone A	M. Kaliski	Excavation Started: 04/07/2023		tion Finished: '07/2023	CONTRACT NUMBER	
TD	Client:	Vida M1 Limited	Scale: NOT TO SCALE, ALL DISTANCES IN m			61611		
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO THE TOP OF SERVICES			ΟŢ	OTA	

Plan

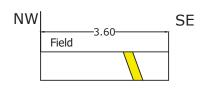
Cross Section

Services

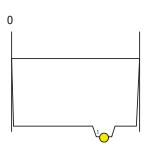
No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
1	150mm	Blue	Water	0.80m	1.20m	75°
2	200mm	Blue	Water	1.20m	1.20m	75°
3	120mm	Red	ESB	1.60m	1.20m	75°
4	120mm	Red	ESB	1.90m	1.20m	75°
5	100mm	Grey	Telecom	2.20m	1.20m	75°
6	100mm	Grey	Telecom	2.40m	1.20m	75°

Ground Conditions

From:	To:	Description:
0.00m	0.30m	TOPSOIL.
0.30m	1.50m	Firm brown black sandy slightly gravelly silty CLAY with low cobble content.


Point:	Easting:	Northing:	Level:
Start	718011.089	758950.553	48.08
End	718014.727	758949.355	47.89

Length:	Width:	Depth:		
3.40m	0.65m	1.20m		



	Project:	M1 Business Park - Zone A	Logged by: D.Monaghan	Excavation Started: 04/07/2023		tion Finished: /07/2023	CONTRACT NUMBER	
TD	Client:	Vida M1 Limited	Scale: NOT TO SCALE,	, ALL DISTANCES I	IN m	61	611	
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO T	THE TOP OF SERVI	CES	OT	OTH	

Plan

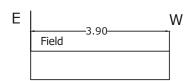
Cross Section

Services

	No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
Г	1	250mm	Yellow	Gas	2.60m	2.10m	70°

Ground Conditions

From:	To:	Description:		
0.00m	0.30m	TOPSOIL.		
0.30m	2.20m Firm brown grey slightly sandy slightly gravelly silty CLAY with high cobble content and frequent gravel laminas.			
Slight water seepages at 0.90mbgl, medium ingress at 1.90mbgl.				


Point:	Easting:	Northing:	Level:
Start	718094.197	758924.514	44.02
Gas Main	718091.522	758925.381	42.20
End	718090.430	758925.575	44.34

Length:	Width:	Depth:	
3.60m	2.40m	2.20m	

	Project:	M1 Business Park - Zone A	Logged by: M.Kaliski	Excavation Started: 25/07/2023		tion Finished: 07/2023	CONTRACT NUMBER	
TD	Client:	Vida M1 Limited	Scale: NOT TO SCALE,	, ALL DISTANCES I	N m	61	611	
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO T	THE TOP OF SERVIO	CES	ΟŢ	OTA	

<u>Plan</u>

Cross Section

Services

No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
No services						

Ground Conditions

From:	To:	Description:
0.00m	0.20m	TOPSOIL.
0.20m	0.90m	Soft becoming firm brown sandy gravelly silty CLAY with low cobble content.
0.90m	1.50m	Firm dark grey slightly sandy gravelly silty CLAY with low cobble content.

Point:	Easting:	Northing:	Level:
Start	718100.475	758851.457	43.71
End	718096.870	758853.313	43.94

Length:	Width:	Depth:	
3.90m	1.70m	1.50m	

	Project:	M1 Business Park - Zone A	Logged by: M.Kaliski	Excavation Started: 28/06/2023		tion Finished: /06/2023	CONTRACT NUMBER	
)	Client:	Vida M1 Limited	Scale: NOT TO SCALE	, ALL DISTANCES I	:N m	61	611	
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO 1	THE TOP OF SERVI	CES	I OT	OTH	

<u>Plan</u>

E 3.30 W

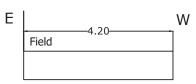
Cross Section

Services

No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
No services						

Ground Conditions

From:	To:	Description:	
0.00m	0.30m	TOPSOIL with red brick fragments.	
0.30m	1.20m	Soft grey brown sandy slightly gravelly silty CLAY with low cobble content.	
1.20m	1.20m 1.50m Firm dark grey sandy slightly gravelly silty CLAY with low cobble content.		
Water seepages at 1.50mbgl.			


Point:	Easting:	Northing:	Level:
Start	718105.835	758769.948	42.05
End	718102.377	758771.783	42.27

Length:	Width:	Depth:
3.30m	1.60m	1.50m

	Project:	M1 Business Park - Zone A	Logged by: M.Kaliski	Excavation Started: 28/06/2023		tion Finished: 06/2023	CONTRACT NUMBER	
TD	Client:	Vida M1 Limited	Scale: NOT TO SCALE, ALL DISTANCES IN m		61	611		
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO T	HE TOP OF SERVIO	CES	ΟŢ	OTA	

<u>Plan</u>

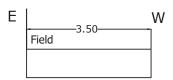
Cross Section

Services

١	No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
Ī	No services						

Ground Conditions

From:	To:	Description:
0.00m	0.30m	TOPSOIL.
0.30m	0.90m	Soft grey brown sandy slightly gravelly silty CLAY with medium cobble content
1.20m	1.50m	Firm grey brown sandy slightly gravelly silty CLAY with low cobble content.


Point:	Easting:	Northing:	Level:
Start	718111.848	758701.485	42.08
End	718108.136	758703.038	42.15

Length:	Width:	Depth:	
4.20m	1.60m	1.50m	

Project:	M1 Business Park - Zone A	Logged by: M.Kaliski	Excavation Started: 28/06/2023		tion Finished: 06/2023	CONTRACT NUMBER	
Client:	Vida M1 Limited	Scale: NOT TO SCALE, ALL DISTANCES IN m		61	611		
Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO T	HE TOP OF SERVI	CES	OT	OTH	

<u>Plan</u>

Cross Section

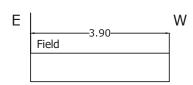
0

Services

١	No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
Ī	No services						

Ground Conditions

From:	To:	Description:
0.00m	0.30m	TOPSOIL.
0.30m	0.80m	Soft grey brown sandy slightly gravelly silty CLAY with low cobble content.
0.80m	1.50m	Firm dark grey sandy slightly gravelly silty CLAY with low cobble content.


Point:	Easting:	Northing:	Level:
Start	718119.654	758622.515	42.52
End	718115.911	758622.019	42.34

Length:	Width:	Depth:		
3.50m	1.40m	1.50m		

	Project:	M1 Business Park - Zone A	Logged by: M.Kaliski			tion Finished: '06/2023	CONTRACT NUMBER	
\mathbb{D}	Client:	Vida M1 Limited	Scale: NOT TO SCALE, ALL DISTANCES IN m		61	611		
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO 1	THE TOP OF SERVI	CES	DT	OTA	1

<u>Plan</u>

Cross Section

Services

	No:	Diameter:	Colour:	Utility:	Distance:	Depth:	Alignment:
1	No services						

Ground Conditions

From:	To:	Description:
0.00m	0.30m	TOPSOIL.
0.30m	1.30m	Soft grey brown sandy slightly gravelly silty CLAY with low cobble content.
1.30m	1.50m	Firm grey brown sandy slightly gravelly silty CLAY with low cobble content.

Point:	Easting:	Northing:	Level:	
Start	718124.208	758555.427	41.84	
End	718120.513	758555.005	41.90	

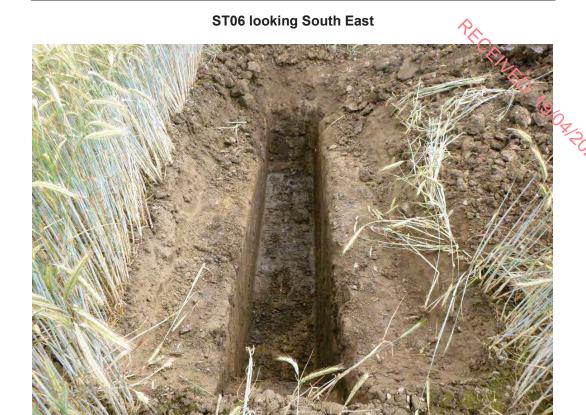
Length:	Width:	Depth:
3.90m	1.50m	0.65m

	Project:	M1 Business Park - Zone A	M.Kaliski	Excavation Started: 28/06/2023		tion Finished: '06/2023	CONTRACT NUMBER	
TD	Client:	Vida M1 Limited	Scale: NOT TO SCALE,	ALL DISTANCES I	N m	61	611	
	Consultant:	Clifton Scannell Emerson Associates	DEPTH ARE TO T	HE TOP OF SERVIO	CES	ΟŢ	OTA	

ST01 250 Gas Pipe

ST02 Spoil

ST03 Spoil


ST04 Spoil

ST05 250 Gas Pipe

ST06 Spoil

ST07 Spoil

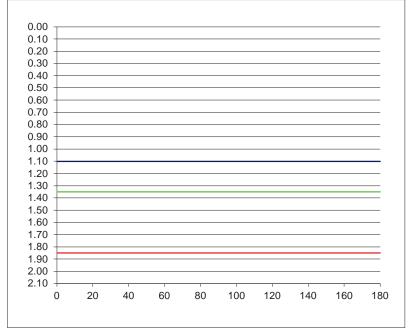
ST08 Spoil

ST09 Spoil

ST10 Spoil

PRICEINED. 7000 POR

Appendix 5 Soakaway Test Results and Photographs


Project Reference:	6161A
Contract name:	M1 Business Park - Zone A
Location:	Balbriggan, Co. Dublin
Test No:	SA01
Date:	03/07/2023

Ground Conditions

From	То	7
0.00	0.30	TOPSOIL.
0.30	1.60	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.
1.60	2.10	Stiff black slightly sandy slightly gravelly silty CLAY with low cobble content.

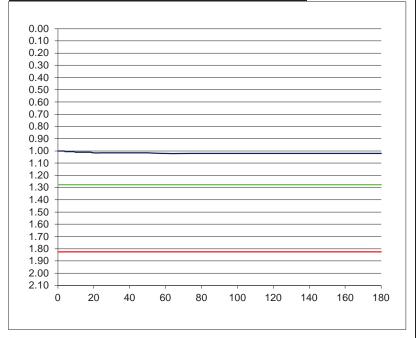
1.60 2.10 Elapsed Time (mins) Fall of Water (m) 0 1.10 0.5 1.10 1 1.10 1.5 1.10 2 1.10 3 1.10 3.5 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10 150 1.10 150 1.10 150 1.10 <	0.30	1.60	
(mins) (m) 0 1.10 0.5 1.10 1 1.10 1.5 1.10 2 1.10 3 1.10 3.5 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	1.60		
0 1.10 0.5 1.10 1 1.10 1.5 1.10 2 1.10 3 1.10 3.5 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10			
0.5 1.10 1 1.10 1.5 1.10 2 1.10 2.5 1.10 3 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10			
1 1.10 1.5 1.10 2 1.10 2.5 1.10 3 1.10 3.5 1.10 4 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10		1.10	
1.5 1.10 2 1.10 2.5 1.10 3 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	0.5	1.10	
2 1.10 2.5 1.10 3 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	1	1.10	
2.5 1.10 3 1.10 3.5 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10		1.10	
3 1.10 3.5 1.10 4 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	2		
3.5 1.10 4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	2.5	1.10	
4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10 150 1.10	3	1.10	
4 1.10 4.5 1.10 5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10 150 1.10	3.5	1.10	
5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	4	1.10	
5 1.10 6 1.10 7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	4.5	1.10	
7 1.10 8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10	5		
8 1.10 9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10	6	1.10	
9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10 150 1.10	7		
9 1.10 10 1.10 12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 150 1.10 150 1.10	8	1.10	
12 1.10 14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10	9	1.10	
14 1.10 16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10			
16 1.10 18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10	12		
18 1.10 20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10	14		
20 1.10 25 1.10 30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10		1.10	
30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10		1.10	
30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10		1.10	
30 1.10 40 1.10 50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10		1.10	
50 1.10 60 1.10 75 1.10 90 1.10 120 1.10 150 1.10	30	1.10	
60 1.10 75 1.10 90 1.10 120 1.10 150 1.10	40		
75 1.10 90 1.10 120 1.10 150 1.10			
90 1.10 120 1.10 150 1.10		1.10	
120 1.10 150 1.10		1.10	
150 1.10		1.10	
		1.10	
180 1.10			
	180	1.10	

plack slightly sandy slightly gravelly slity CLAY with lo		
Pit Dimensions (m)		
Length (m)	2.70	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.10	m
Depth of Water	1.00	m
75% Full	1.35	m
25% Full	1.85	m
75%-25%	0.50	m
Volume of water (75%-25%)	0.95	m3
Area of Drainage	14.28	m2
Area of Drainage (75%-25%)	5.29	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = <u>Fail</u> or <u>Fail</u> m/s

Project Reference:	6161A
Contract name:	M1 Business Park - Zone A
Location:	Balbriggan, Co. Dublin
Test No:	SA02
Date:	03/07/2023

Ground Conditions


From	То	7
0.00	0.30	TOPSOIL.
0.30		Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with low cobble content.

0.30	2.10	
Elapsed Time	Fall of Water	
(mins)	(m)	
0	1.00	
0.5	1.00	
1	1.00	
1.5	1.00	
2	1.00	
2.5	1.00	
3	1.00	
3.5	1.00	
4	1.01	
4.5	1.01	
5	1.01	
6 7	1.01	
	1.01	
8	1.01	
9	1.01	
10	1.01 1.01	
12	1.01	
14	1.01	
16	1.01	
18	1.01	
20	1.02	
25	1.02	
30	1.02	
40	1.02	
50	1.02	
60	1.02	
75	1.02	
90	1.02	
120	1.02	

150

180

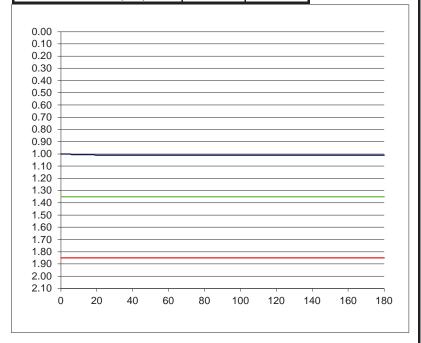
e content.		
Pit Dimensions (m)		
Length (m)	2.80	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.00	m
Depth of Water	1.10	m
75% Full	1.28	m
25% Full	1.83	m
75%-25%	0.55	m
Volume of water (75%-25%)	1.08	m3
Area of Drainage	14.70	m2
Area of Drainage (75%-25%)	5.81	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

1.02

1.02

Project Reference:	6161A
Contract name:	M1 Business Park - Zone A
Location:	Balbriggan, Co. Dublin
Test No:	SA03
Date:	03/07/2023


Ground Conditions

From	То	7
0.00	0.30	TOPSOIL.
0.30		Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with low cobble content.

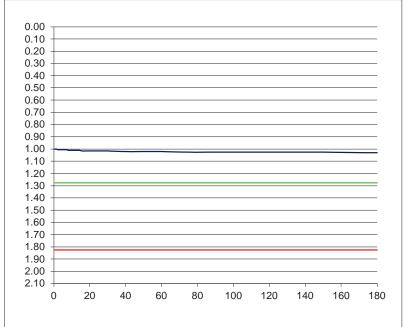
0.30	2.10	
Elapsed Time	Fall of Water	
(mins)	(m)	
0	1.00	
0.5	1.00	
1	1.00	
1.5	1.00	
2	1.00	
2.5	1.00	
3	1.00	
3.5	1.00	
4	1.00	
4.5	1.00	
5	1.00	
6	1.01	
7	1.01	
8	1.01	
9	1.01	
10	1.01	
12	1.01	
14	1.01	
16	1.01	
18	1.01	
20	1.01	
25	1.01	
30	1.01	
40	1.01	
50	1.01	
60	1.01	
75	1.01	
90	1.01	
120	1.01	
150	1.01	

180

e content.		
Pit Dimensions (m)		
Length (m)	2.70	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.10	m
Depth of Water	1.00	m
75% Full	1.35	m
25% Full	1.85	m
75%-25%	0.50	m
Volume of water (75%-25%)	0.95	m3
Area of Drainage	14.28	m2
Area of Drainage (75%-25%)	5.29	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

1.01


Project Reference:	6161A
Contract name:	M1 Business Park - Zone A
Location:	Balbriggan, Co. Dublin
Test No:	SA04
Date:	03/07/2023

Ground Conditions

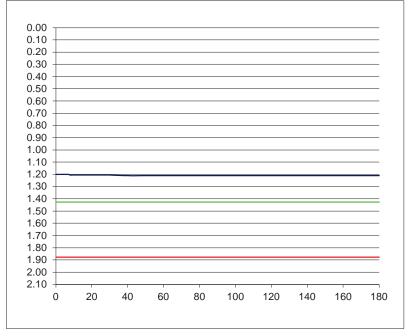
From	То	7
0.00	0.30	TOPSOIL.
0.30	1.80	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.
1.80	2.10	Stiff black slightly sandy slightly gravelly silty CLAY with low cobble content.

0.00	1.00			
1.80	2.10			
Elapsed Time	Fall of Water			
(mins)	(m)			
0	1.00			
0.5	1.00			
1	1.00			
1.5	1.00			
2	1.01			
2.5	1.01			
3	1.01			
3.5	1.01			
4	1.01			
4.5	1.01			
5	1.01 1.01			
6	1.01			
7	1.01			
8	1.01			
9	1.01			
10	1.01			
12	1.01			
14	1.01			
16	1.02			
18	1.02			
20	1.02			
25	1.02			
30	1.02			
40	1.02			
50	1.02			
60	1.02			
75	1.03			
90	1.03			
120	1.03			
150	1.03			
180	1.03			

Pit Dimensions (m)							
Length (m)	2.90	m					
Width (m)	0.70						
Depth	2.10						
Water	2.10						
Start Depth of Water	1.00	m					
Depth of Water	1.10	m					
75% Full	1.28	m					
25% Full	1.83	m					
75%-25%	0.55	m					
Volume of water (75%-25%)	1.12	m3					
Area of Drainage	15.12	m2					
Area of Drainage (75%-25%)	5.99	m2					
Time							
75% Full	N/A	min					
25% Full	N/A	min					
Time 75% to 25%	N/A	min					
Time 75% to 25% (sec)	N/A	sec					

f = Fail or Fail m/min

Project Reference:	6161A
Contract name:	M1 Business Park - Zone A
Location:	Balbriggan, Co. Dublin
Test No:	SA05
Date:	03/07/2023


Ground Conditions

From	То	7
0.00	0.30	TOPSOIL.
0.30		Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with low cobble content.

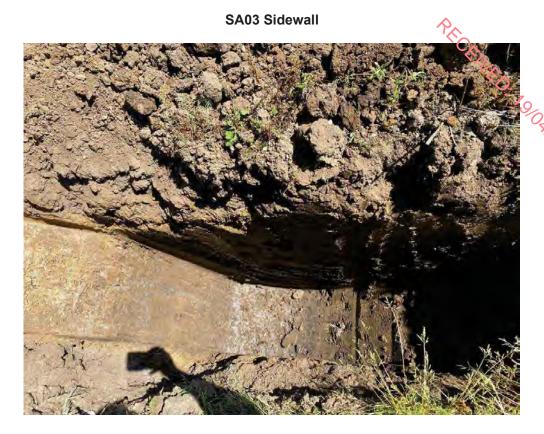
0.30	2.10
Elapsed Time	Fall of Water
(mins)	(m)
, ,	1.20
0.5	1.20
1	1.20
1.5	1.20
2	1.20
2.5	1.20
3	1.20
3.5	1.20
4	1.20
4.5	1.20 1.20
5	1.20
6	1.20
7	1.20
8	1.21
9	1.21
10	1.21
12	1.21
14	1.21
16	1.21
18	1.21
20	1.21
25	1.21
30	1.21
40	1.21
50	1.21
60	1.21
75	1.21
90	1.21
120	1.21
150	1.21

180

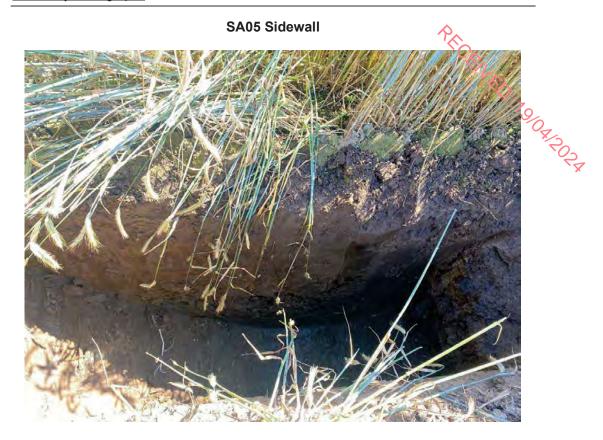
e content.		
Pit Dimensions (m)		
Length (m)	2.80	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.20	m
Depth of Water	0.90	m
75% Full	1.43	m
25% Full	1.88	m
75%-25%	0.45	m
Volume of water (75%-25%)	0.88	m3
Area of Drainage	14.70	m2
Area of Drainage (75%-25%)	5.11	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec


f = <u>Fail</u> or <u>Fail</u> m/s

1.21


SA01 Spoil

SA02 Spoil


SA03 Spoil

SA04 Spoil

SA05 Spoil

PRICEINED. 7000 POR

Appendix 6 Insitu California Bearing Ratio Test Results

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I. File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	1st August 2023

CBR No	Depth (mBGL)	Sample No	Lab Ref	Sample Type	Moisture Content (%)	CBR Value (%)	Location / Remarks
1	0.50	DM40	23/873	В	26.5	6.7	
2	0.50	DM41	23/874	В	13.5	6.0	
3	0.50	DM42	23/875	В	23.9	6.9	
4	0.50	DM43	23/876	В	16.4	7.7	
5	0.50	DM44	23/877	В	28.9	6.2	

Printed 03/10/2023

Site Investigations Ltd

PRICEINED. 7000 POR

Appendix 7 Geotechnical Laboratory Test Results

Classification Tests In accordance with BS 1377: Part 2

Client	Vida M1 Limited	
Site	M1 Business Park -Zone A	
S.I. File No	6161A / 23	0_
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.i	e 💫
Report Date	1st August 2023	, O2

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Max.	Bulk	%	Comments	Remarks C=Clay; M=Silt
		No	No.	Type	Moisture	Limit	Limit	Index	Density	Density	passing		Plasticity: L=Low;
					Content	%	%	%	Mg/m^2	Mg/m ³	425um		I =Intermediate; H =High;
					%								V=Very High; E=Extremely
													High
TP01	1.00	DM02	23/839	В	13.3	33	19	14			55.1		CL
TP02	1.00	DM05	23/840	В	22.1	34	19	15			65.3		CL
TP03	1.00	DM08	23/841	В	24.8	37	20	17			72.9		CI
TP04	1.00	DM11	23/842	В	18.9	35	19	16			66.4		CL/CI
TP05	1.00	DM14	23/843	В	16.9	33	18	15			61.7		CL
TP06	1.00	DM16	23/844	В	14.7	37	21	16			67.0		CI

BS 1377 Particle Size Analysis

Site Investigations Limited

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	39
90	100	0.0200	33
75	100	0.0060	28
63	100	0.0020	24
50	100		
37.5	100		
28	91.6		
20	89.6		
14	87.4		
10	84.4		
6.3	79.3		
5.0	77.4		
2.36	69.2		
2.00	67.8		
1.18	63.3		
0.600	59.2		
0.425	55.1		
0.300	52.5		
0.212	49.6		
0.150	46.1		
0.063	39		

1	100]											ПП
1	90 -										A + H	
	80 -									20	7	
	70 -										*	
sing	60 -											
ge Pas	50 -											
Percentage Passing	40 -											
	30 -											
	20 -											
1	10 -											
	0.0	01		0.01		0.1		1		10		100
		CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobble
		CI		SILT			SAND			GRAVEL		CO

Cobbles, %	0
Gravel, %	32
Sand, %	29
Silt, %	15
Clay %	24

Client:	Vida M1 Limited			
Project:	M1 Business Park -Zone A			

Lab. No:	23/839
Sample No:	DM02

Hole ID :	TP 01
Depth, m:	1.00

Material description:	slightly sandy slightly gravelly silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	47
90	100	0.0200	39
75	100	0.0060	34
63	100	0.0020	28
50	100		
37.5	91.4		
28	91.4		
20	91.4		
14	90.5		
10	88.6		
6.3	84.9		
5.0	83.1		
2.36	78.2		
2.00	76.6		
1.18	73.2		
0.600	69.1		
0.425	65.3		
0.300	62.3		
0.212	58.3		
0.150	54.1		
0.063	47		

╢	100								7 (O.)			ПП
	90 -										+/	
	80 -									20,	7	
	70 -											
	60 -											
T Base	8 50 -											
Percentage Passing	40 -											
╣▔	30 -											
1	20 -											
	10 -											
_	0 -											
	0.0	01		0.01		0.1		1		10		100
		CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobble
		D		SILT			SAND			GRAVEL		ర

Cobbles, %	0
Gravel, %	23
Sand, %	30
Silt, %	19
Clay, %	28

Client:	Vida M1 Limited			
Project:	M1 Business Park -Zone A			

Lab. No:	23/840	Hole ID :	TP 02
Sample No:	DM05	Depth, m:	1.00

Material description:	slightly sandy slightly gravelly silty CLAY
Domorks .	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	53
90	100	0.0200	45
75	100	0.0060	39
63	100	0.0020	33
50	100		
37.5	100		
28	100		
20	100		
14	99.3		
10	96.1		
6.3	92.6		
5.0	90.9		
2.36	87.5		
2.00	85.8		
1.18	81.8		
0.600	77.2		
0.425	72.9		
0.300	68.5		
0.212	63.7		
0.150	60.1		
0.063	53		

	100 T								0.			
	90									0		
	80 -									20,	7	
	70 -										×	
Bu												
Passi	60 -											
Percentage Passing	50 -	\exists										
Perc	40	\dashv										
	30	\neg										
	20 -											
	10 -											Ш
	0.0	01		0.01		0.1		1		10		100
		CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	Cobble
		ū		SILT			SAND			GRAVEL		ပိ

Cobbles, %	0
Gravel, %	14
Sand, %	33
Silt, %	20
Clay %	33

Client:	Vida M1 Limited
Project:	M1 Business Park -Zone A

Lab. No:	23/841	Hole ID :	TP 03
Sample No:	DM08	Depth, m:	1.00

	Material description:	slightly sandy slightly gravelly silty CLAY
ſ		Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
L	Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	51
90	100	0.0200	42
75	100	0.0060	37
63	100	0.0020	31
50	100		
37.5	100		
28	100		
20	98.3		
14	96.8		
10	94.4		
6.3	91		
5.0	89.4		
2.36	82.3		
2.00	80.6		
1.18	75.4		
0.600	70.6		
0.425	66.4		
0.300	64.1		
0.212	61.8		
0.150	58		
0.063	51		

				1 1			.	
	30 -							
Percentage Passing	50 -							
Passing	70 - 60 -							
	80 -					20.) X	
-	100 T							

Cobbles, %	0
Gravel, %	19
Sand, %	30
Silt, %	20
Clay. %	31

Client:	Vida M1 Limited
Project:	M1 Business Park -Zone A

Lab. No:	23/842	Hole ID:	TP 04
Sample No:	DM11	Depth, m:	1.00

	Material description:	slightly sandy slightly gravelly silty CLAY
ſ		Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
L	Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS 1377 Particle Size Analysis

Site Investigations Limited

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	47
90	100	0.0200	39
75	100	0.0060	34
63	100	0.0020	29
50	100		
37.5	100		
28	100		
20	94.9		
14	92.9		
10	90		
6.3	84.7		
5.0	82.9		
2.36	75.7		
2.00	74.1		
1.18	70.2		
0.600	65.9		
0.425	61.7		
0.300	58.8		
0.212	55.7		
0.150	52.3		
0.063	47		

Percentage Passing						
30 - 20 - 10 -						
0.0	001	 0.01	0.1	 1	 10	 100

Cobbles, %	0
Gravel, %	26
Sand, %	27
Silt, %	18
Clay %	29

Client:	Vida M1 Limited
Project:	M1 Business Park -Zone A

Lab. No:	23/843	Hole ID :	TP 05
Sample No:	DM14	Depth, m:	1.00

Material description :	slightly sandy slightly gravelly silty CLAY
Domorko .	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	51
90	100	0.0200	43
75	100	0.0060	37
63	100	0.0020	31
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	98.2		
6.3	93.3		
5.0	91.7		
2.36	84.2		
2.00	82.4		
1.18	75.9		
0.600	70.7		
0.425	67		
0.300	64.8		
0.212	62.4		
0.150	59.2		
0.063	51		

Percentage Passing						
30 -						
10 -						
0.0	01	0.01	0.1	1	10	100

Cobbles, %	0
Gravel, %	18
Sand, %	31
Silt, %	20
Clay %	31

Client:	Vida M1 Limited
Project:	M1 Business Park -Zone A

Lab. No:	23/844	Hole ID :	TP 06
Sample No:	DM16	Depth, m:	1.00

	Material description:	slightly sandy slightly gravelly silty CLAY
ſ		Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
L	Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Vida M1 Limited	19/0
Site	M1 Business Park -Zone A	Z,
S.I. File No	6161A / 23	5 0 ₂
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768	Email info@siteinvestigations.ie 🗸
Report Date	1st August 2023	

CBR No	Depth (mBGL)	Sample No	Lab Ref	Sample Type	Moisture Content (%)	CBR Value (%)	Location / Remarks
TP01	1.00	DM02	23/839	В	13.3	8.8	
TP02	1.00	DM05	23/840	В	22.1	5.2	
TP03	1.00	DM08	23/841	В	24.8	7.2	
TP04	1.00	DM11	23/842	В	18.9	8.3	
TP05	1.00	DM14	23/843	В	16.9	7.3	
TP06	1.00	DM16	23/844	В	14.7	9.5	

Printed 10/08/2023

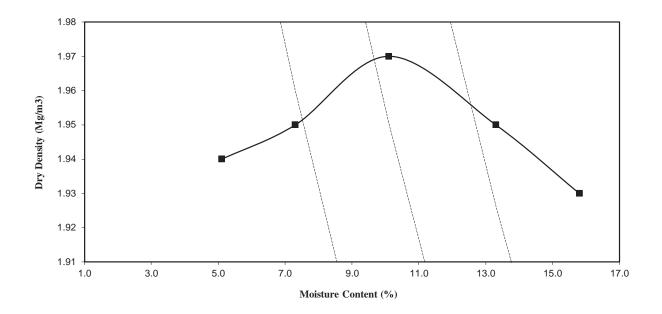
Site Investigations Ltd

Determination of Moisture Content BS 1377: Part 2: Method 3 Determination of Moisture Condition Value BS 1377: Part 4

Client	Vida M1 Limited	~~~
Site	M1 Business Park -Zone A	- 2
S.I.File No	6161A / 23	^
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Email info@siteinvestigations.ie	
Report date	1st August 2023	

Hole ID	Depth	Sample No	Ref No.	Sample Type	Natural Moisture Content %	Moisture Condition Value	Remarks
TP01	1.00	DM02	23/839	В	13.3	7.3	
TP02	1.00	DM05	23/840	В	22.1	6.2	
TP03	1.00	DM08	23/841	В	24.8	6.8	
TP04	1.00	DM11	23/842	В	18.9	5.9	
TP05	1.00	DM14	23/843	В	16.9	7.1	
TP06	1.00	DM16	23/844	В	14.7	8.3	

Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I.File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar, The Grange, 12th Lock Rd., Lucan, Co. Dublin Tel 6108768
Report Date	1st August 2023


Hole Id:	TP01
Depth (mBGL):	1.00
Lab Ref:	23/839
Sample No	DM02

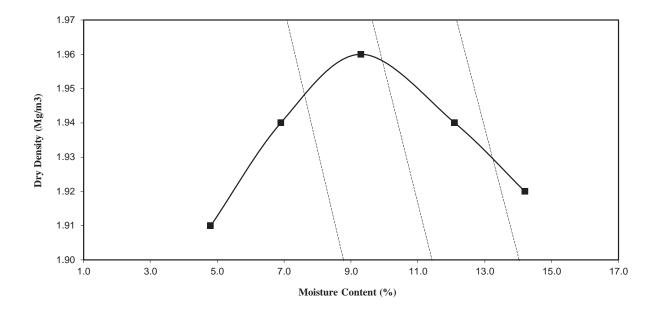
Particle Density
2.59
Assumed

Natural Moisture Content (%)	13.3
Rammer Used	2.5Kg
Maximum Dry Density (Mg/m ³)	Y.97
Optimum Moisture Content (%)	10.1

Point Number	1	2	3	4	5
Moisture content	5.1	7.3	10.1	13.3	15.8
Dry Density (Mg/m3)	1.94	1.95	1.97	1.95	1.93

Material Description	
slightly sandy slightly	
gravelly silty CLAY	

Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I.File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar, The Grange, 12th Lock Rd., Lucan, Co. Dublin Tel 6108768
Report Date	1st August 2023


Hole Id:	TP02
Depth (mBGL):	1.00
Lab Ref:	23/840
Sample No	DM05

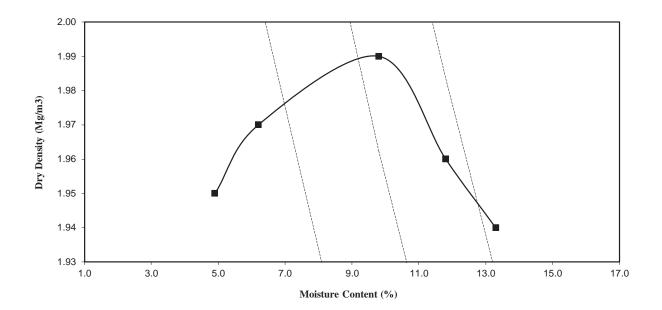
Particle Density
2.59
Assumed

Natural Moisture Content (%)	22.1
Rammer Used	2.5Kg
Maximum Dry Density (Mg/m ³)	Y.96
Optimum Moisture Content (%)	9.3

Point Number	1	2	3	4	5
Moisture content	4.8	6.9	9.3	12.1	14.2
Dry Density (Mg/m3)	1.91	1.94	1.96	1.94	1.92

Material Description	
slightly sandy slightly	
gravelly silty CLAY	

Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I.File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar, The Grange, 12th Lock Rd., Lucan, Co. Dublin Tel 6108768
Report Date	1st August 2023

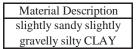

Hole Id:	TP03
Depth (mBGL):	1.00
Lab Ref:	23/841
Sample No	DM08

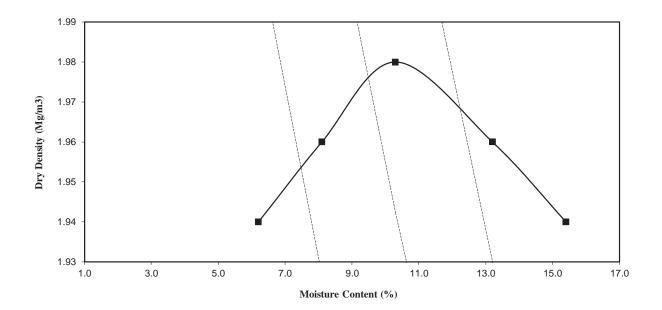
Particle Density
2.59
Assumed

Natural Moisture Content (%)	24.8
Rammer Used	2.5Kg
Maximum Dry Density (Mg/m ³)	T.99
Optimum Moisture Content (%)	9.6

Point Number	1	2	3	4	5
Moisture content	4.9	6.2	9.8	11.8	13.3
Dry Density (Mg/m3)	1.95	1.97	1.99	1.96	1.94

Material Description	
slightly sandy slightly	
gravelly silty CLAY	


Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I.File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar, The Grange, 12th Lock Rd., Lucan, Co. Dublin Tel 6108768
Report Date	1st August 2023

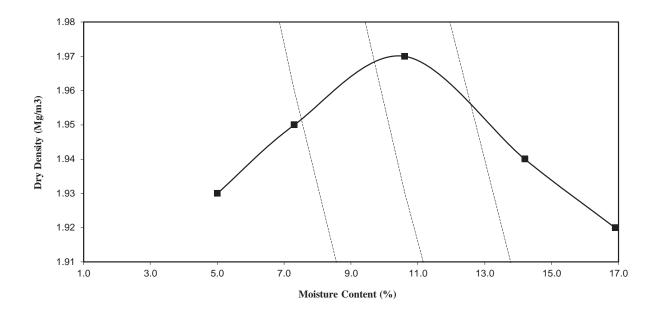

Hole Id:	TP04
Depth (mBGL):	1.00
Lab Ref:	23/842
Sample No	DM11

Particle Density
2.59
Assumed

Natural Moisture Content (%)	18.9
Rammer Used	2.5Kg
Maximum Dry Density (Mg/m ³)	T.98
Optimum Moisture Content (%)	10.3

Point Number	1	2	3	4	5
Moisture content	6.2	8.1	10.3	13.2	15.4
Dry Density (Mg/m3)	1.94	1.96	1.98	1.96	1.94

Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I.File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar, The Grange, 12th Lock Rd., Lucan, Co. Dublin Tel 6108768
Report Date	1st August 2023


Hole Id:	TP05
Depth (mBGL):	1.00
Lab Ref:	23/843
Sample No	DM14

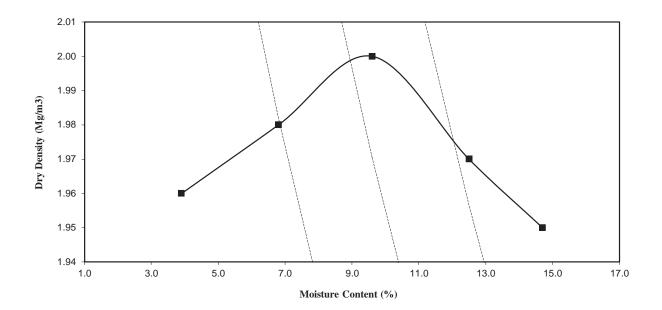
Particle Density
2.59
Assumed

Natural Moisture Content (%)	16.9
Rammer Used	2,5Kg
Maximum Dry Density (Mg/m ³)	T.97
Optimum Moisture Content (%)	10.4

Point Number	1	2	3	4	5
Moisture content	5.0	7.3	10.6	14.2	16.9
Dry Density (Mg/m3)	1.93	1.95	1.97	1.94	1.92

Material Description	
slightly sandy slightly	
gravelly silty CLAY	

Client	Vida M1 Limited
Site	M1 Business Park -Zone A
S.I.File No	6161A / 23
Test Lab	Site Investigations Ltd., Carhugar, The Grange, 12th Lock Rd., Lucan, Co. Dublin Tel 6108768
Report Date	1st August 2023


Hole Id:	TP06
Depth (mBGL):	1.00
Lab Ref:	23/844
Sample No	DM16

Particle Density
2.59
Assumed

Natural Moisture Content (%)	14.7
Rammer Used	2,5Kg
Maximum Dry Density (Mg/m ³)	2.00
Optimum Moisture Content (%)	9.4

Point Number	1	2	3	4	5
Moisture content	3.9	6.8	9.6	12.5	14.7
Dry Density (Mg/m3)	1.96	1.98	2.00	1.97	1.95

Material Description	
slightly sandy slightly	
gravelly silty CLAY	

Chemical Testing In accordance with BS 1377: Part 3

Client	Vida M1 Limited	1/2
Site	M1 Business Park -Zone A	
S.I. File No	6161A / 23	· 7-
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768	Email:info@siteinvestigations.ie
Report Date	1st August 2023	Z.

									7	22
Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Acid Soluble	Acid Soluble	Chloride	passing
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Sulphate Content	Sulphate Content	ion	2mm
					(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	Content	
					extract) (SO ₃)	(water:soil				
					g/L	%	g/L	%	ratio 2:1)	
					-				%	
TP01	1.00	DM02	23/839	7.93	0.123	0.083			0.16	67.8
TP02	1.00	DM05	23/840	8.19	0.122	0.093			0.15	76.6
TP03	1.00	DM08	23/841	8.30	0.123	0.106			0.17	85.8
TP04	1.00	DM11	23/842	8.25	0.122	0.098			0.15	80.6
TP05	1.00	DM14	23/843	8.11	0.124	0.092			0.18	74.1
TP06	1.00	DM16	23/844	8.07	0.124	0.103			0.11	82.4

PRICEINED. 7000 POR

Appendix 8 Environmental Laboratory Test Results

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

CH5 3US Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CENED. 79/04/2024

CERTIFICATE OF ANALYSIS

Date of report Generation: 26 July 2023

Customer: Site Investigations Ltd

Sample Delivery Group (SDG): 230718-44 Your Reference: 6161

Location: M1 Business Park - Zone A

 Report No:
 697982

 Order Number:
 41/A/23

We received 6 samples on Tuesday July 18, 2023 and 6 of these samples were scheduled for analysis which was completed on Tuesday July 25, 2023. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

ALS Laboratories (UK) Limited. Registered Office: Torrington Avenue, Coventry CV4 9GU. Registered in England and Wales No. 02391955.

Version: 3.6 Version Issued: 26/07/2023

Validated

SDG: 230718-44 Report Number: 697982 Superseded Report: Client Ref.: 6161 Location: M1 Business Park - Zone A

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
28344642	TP01		0.50 0.50	17/07/2023
28344643	TP02		0.50 - 0.50	17/07/2023
28344644	TP03		0.50 - 0.50	17/07/2023
28344645	TP04		0.50 - 0.50	17/07/2023
28344646	TP05		0.50 - 0.50	17/07/2023
28344647	TP06		0.50 - 0.50	017/07/2023

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: 230718-44 **Client Ref**.: 6161

Report Number: 697982

Superseded Report:

SDG: Client Ref.:	230718-44 6161		R	epor				9798 11 Bu		ss Pa	ırk - İ			sede	d Re	oort:				
Results Legend X Test No Determination	Lab Sample	No(s)			28344642			28344643			28344644			28344645	C.		28344646			28344647
Possible Sample Types -	Customo Sample Refe				TP01			TP02			TP03			TP04	<u> </u>	LA	T P05	905	75	TP06
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence																		2×
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	ype	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Anions by Kone (w)	All	NDPs: 0 Tests: 6	Х			X			X			X			Х			Х		
CEN Readings	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
Chromium III	All	NDPs: 0 Tests: 6		X			X			X			Х			Х			X	
Coronene	All	NDPs: 0 Tests: 6		X			X			X			X			X			X	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 6	X			X			X			X			X			X		
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 6	Х			X			X			X			X			X		
EPH by GCxGC-FID EPH CWG GC (S)	All	NDPs: 0 Tests: 6		X			X			X			X			X			X	
Fluoride	All	NDPs: 0 Tests: 6		X			X			X			X			X			X	
GRO by GC-FID (S)	All	NDPs: 0 Tests: 6 NDPs: 0	Х			X			X			X			X			X		
Hexavalent Chromium (s)	All	Tests: 6			X			X			X			X			X			X
Loss on Ignition in soils	All	Tests: 6		X			X			X			X			X			X	
Mercury Dissolved	All	Tests: 6		X			X			X			X			X			X	
Metals in solid samples by OES	All	Tests: 6	Х			X			X			X			X			X		
PAH 16 & 17 Calc	All	Tests: 6		X			X			X			X			X			X	
The state of the s		Tests: 6		X			X			X			X			X			X	

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 230718-44 **Client Ref**.: 6161 Report Number: 697982 Supe Location: M1 Business Park - Zone A

Client Rei											IIK -								_	=		
Results Legend	Lab Sample	No(s)			283			283			283			283			283			283		
X Test	Lab Sample	140(3)			28344642			28344643			28344644			28344645			28344646			28344647		
No Determination Possible								-							\sim	1.						
Sample Types -	Customo Sample Refe				TP01			TP02			TP03			TP04			TP05	90	720	TP06		
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence																	,0	N C		
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	Depth (m)		Depth (m)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)		
	Sample Ty	ype	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S		
PAH by GCMS	All	NDPs: 0 Tests: 6		X			X			Х			Х			Х			Х			
PCBs by GCMS	All	NDPs: 0 Tests: 6		Х			Х			Х			X			Х			Х			
pH	All	NDPs: 0 Tests: 6		X			X			X			Х			Х			Х			
pH Value of Filtered Water	All	NDPs: 0 Tests: 6	X			X			Х			Х			X			X				
Phenols by HPLC (W)	All	NDPs: 0 Tests: 6	Х			Х			Х			Х			Х			X				
Sample description	All	NDPs: 0 Tests: 6		X			X			Х			Х			Х			Х			
Total Dissolved Solids on Leachates	All	NDPs: 0 Tests: 6	X			X			Х			Х			X			X				
Total Organic Carbon	All	NDPs: 0 Tests: 6		Х			X			Х			Х			Х			Х	\exists		
TPH CWG GC (S)	All	NDPs: 0 Tests: 6		Х			X			Х			Х			Х			Х			
VOC MS (S)	All	NDPs: 0 Tests: 6			Х			X			Х			X			X			X		

Validated

SDG: 230718-44 **Client Ref.:** 6161

Report Number: 697982

Superseded Report:

Location: M1 Business Park - Zone A

Sample Descriptions

Grain Sizes													
very fine <0.0	0.063mm fine 0.06	3mm - 0.1mm m	edium 0.1mm	n - 2mm coai	rse 2mm - 1	Omro very coa	arse >10mm						
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	1						
28344642	TP01	0.50 - 0.50	Dark Brown	Silty Clay Loam	Stones	None	_						
28344643	TP02	0.50 - 0.50	Light Brown	Sandy Clay Loam	Stones	None	9						
28344644	TP03	0.50 - 0.50	Light Brown	Sandy Clay Loam	Stones	Vegetation	0/04/2024						
28344645	TP04	0.50 - 0.50	Light Brown	Clay	Vegetation	Stones	P.						
28344646	TP05	0.50 - 0.50	Dark Brown	Loamy Sand	Stones	Vegetation							
28344647	TP06	0.50 - 0.50	Dark Brown	Loamy Sand	Stones	Vegetation							

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 230718-44 Client Ref.: 6161

Report Number: 697982

Superseded Report:

Results Legend	Custo	omer Sample Ref.	TP01		TP02		TP03		TP04	TP05		TP06	
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.									A				
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample.		Depth (m) Sample Type	0.50 - 0.50 Soil/Solid (S)	50 - 0.50 Soil/Solid (S	\	0.50 - 0.50 Soil/Solid (S)							
 Subcontracted - refer to subcontractor repo accreditation status. 		Date Sampled	17/07/2023		17/07/2023		17/07/2023		17/07/2023	17/07/2023)	17/07/2023	
** % recovery of the surrogate standard to che efficiency of the method. The results of indi-	vidual	Sample Time Date Received	18/07/2023		18/07/2023		18/07/2023		18/07/2023	18/07/2023		18/07/2023	
compounds within samples aren't corrected recovery (F) Trigger breach confirmed		SDG Ref ab Sample No.(s)	230718-44 28344642		230718-44 28344643		230718-44 28344644		230718-44 28344645	230716-14 28344646		230718-44 28344647	
1-4+§@ Sample deviation (see appendix)		AGS Reference									70		
Moisture Content Ratio (% of as received sample)	LOD/Units %	Method PM024	12	1	17		16		15	11	رق	11	
Loss on ignition	<0.7 %	TM018	4.69	М	4.33	М	4.26	М	4.4 N	7.29	М	5,22	М
Organic Carbon, Total	<0.2 %	TM132	0.612	М	0.399	М	0.445	М	0.398 N	0.642	М	0.645	М
рН	1 pH Units	TM133	7.45	М	6.05	М	6.34	М	6.01 N	6.62	М	8.03	М
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	М	<0.6	М	<0.6	М	<0.6	<0.6	М	<0.6	М
PCB congener 28	<3 µg/kg	TM168	<3	М	<3	M	<3	М	<3 N	<3	М	<3	М
PCB congener 52	<3 µg/kg	TM168	<3	М	<3	M	<3	М	<3 N	<3	М	<3	М
PCB congener 101	<3 µg/kg	TM168	<3	М	<3	M	<3	М	<3 N	<3	М	<3	М
PCB congener 118	<3 µg/kg	TM168	<3	М	<3	M	<3	М	<3 N	<3	M	<3	М
PCB congener 138	<3 µg/kg	TM168	<3	М	<3	М	<3	М	<3 N	<3	М	<3	М
PCB congener 153	<3 µg/kg	TM168	<3	М	<3	М	<3	М	<3 N	<3	М	<3	М
PCB congener 180	<3 µg/kg	TM168	<3	М	<3	М	<3	М	<3 N	<3	М	<3	М
Sum of detected PCB 7 Congeners	<21 µg/kg	TM168	<21		<21		<21		<21	<21		<21	
Chromium, Trivalent	<0.9 mg/kg	TM181	16.3		22.3		52.3		23.8	25.4		23.4	
Antimony	<0.6 mg/kg	TM181	2.36	#	2.21	#	0.831	#	<0.6	2.45	#	2.77	#
Arsenic	<0.6 mg/kg	TM181	18.9	М	21.5	М	23.4	М	9.9 N	20.8	М	22.2	М
Barium	<0.6 mg/kg	TM181	77.1	#	66.1	#	90.3	#	64.4	98.1	#	80.2	#
Cadmium	<0.02 mg/kg	TM181	1.1	М	0.292	М	0.878	М	0.154 N	1.91	М	1.96	М
Chromium	<0.9 mg/kg	TM181	16.3	М	22.3	М	52.3	М	23.8 N	25.4	М	25	М
Copper	<1.4 mg/kg	TM181	43.6	М	31.7	М	27.9	М	19.5 N	68.4	М	60.3	М
Lead	<0.7 mg/kg		13.4	М	13.9	М	12.9	М	11.9 N	16.6	М	16.9	М
Mercury	<0.1 mg/kg	TM181	<0.1	М	<0.1	М	<0.1	М	<0.1 N	<0.1	М	<0.1	М
Molybdenum	<0.1 mg/kg	TM181	4.68	#	5.15	#	5.96	#	2.7 ‡		#	5.37	#
Nickel	<0.2 mg/kg	TM181		М	31	М	34.7	М	17.5 N		М	57	М
Selenium	<1 mg/kg	TM181	2.05	#	3.86	#	1.95	#	2 #		#	2.1	#
Zinc	<1.9 mg/kg	TM181		М	45.7	М	61.2	М	45.2 N		М	70.7	М
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/kg	TM410	<10		<10		<10		<10	<10		<10	
Coronene	<200 µg/kg		<200		<200		<200		<200	<200		<200	
Mineral Oil >C10-C40 (EH_2D_AL)	<5 mg/kg	TM415	<5		<5		<5		<5	<5		<5	

ALS

SDG: 230718-44 **Client Ref**.: 6161

Report Number: 697982

ımber: 697982 Superseded Report:

Chefit K	.ci 0101			LUC	ation.	IVIT busines	s raik	- Zuile A					
PAH by GCMS Results Legend	Cu	ustomer Sample Ref	TP01	TF	P02	TP03		TP04		TP05		TP06	
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt/rotal / unfiltered sample. * Subcontracted - refer to subcontractor re accreditation status.	·	Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S)	0.50 Soil/S	- 0.50 olid (S) 7/2023	0.50 - 0.5 Soil/Solid (17/07/202	(S)	0.50 - 0.50 Soil/Solid (S 17/07/2023	i) (0.50 - 0.50 Soil/Solid (S) 17/07/2023		0.50 - 0.50 Soil/Solid (S) 17/07/2023	
** % recovery of the surrogate standard to deficiency of the method. The results of in compounds within samples aren't correct recovery (F) Trigger breach confirmed 1-44§@ Sample deviation (see appendix)	ndividual ted for the	Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	18/07/2023 230718-44 28344642	2307	7/2023 118-44 14643	18/07/202 230718-4 2834464	4	18/07/2023 230718-44 28344645		18/07/2023 230716-14 28344646	7,0	18/07/2023 230718-44 28344647	
Component Naphthalene	LOD/Únit <9 μg/kg		<9		<9	<9		<9		<9	7	<9	.,
Acenaphthylene	<12 µg/k	g TM218	<12		12 M	<12	M	<12	M	<12	M	2 ≤12	M
Acenaphthene	<8 µg/kg	g TM218	<8		M <8	<8	M	<8	M	<8	M	<8	M
Fluorene	<10 µg/k	g TM218	<10	M <	10 M	<10	M M	<10	M	<10	M	<10	M M
Phenanthrene	<15 µg/k	g TM218	<15		15 M	<15	M	<15	M	<15	M	<15	M
Anthracene	<16 µg/k	g TM218	<16		16 M	<16	M	<16	M	<16	M	<16	M
Fluoranthene	<17 µg/k	g TM218	<17		17 M	<17	M	<17	M	<17	М	<17	M
Pyrene	<15 µg/k	g TM218	<15		15 M	<15	M	<15	M	<15	М	<15	M
Benz(a)anthracene	<14 µg/k	g TM218	<14		14 M	<14	M	<14	M	<14	M	<14	M
Chrysene	<10 µg/k	g TM218	<10		10 M	<10	M	<10	M	<10	М	<10	M
Benzo(b)fluoranthene	<15 µg/k	g TM218	<15		15 M	<15	M	<15	M	<15	М	<15	M
Benzo(k)fluoranthene	<14 µg/k	g TM218	<14		14 M	<14	M	<14	M	<14	М	<14	M
Benzo(a)pyrene	<15 µg/k	g TM218	<15		15 M	<15	M	<15	M	<15	М	<15	M
Indeno(1,2,3-cd)pyrene	<18 µg/k	g TM218	<18	<	18 M	<18		<18		<18	M	<18	
Dibenzo(a,h)anthracene	<23 µg/k	g TM218	<23	M <	23 M	<23	M M	<23	M	<23	M	<23	M
Benzo(g,h,i)perylene	<24 µg/k	g TM218	<24		24 M	<24	M	<24	M	<24	М	<24	M
PAH, Total Detected USEPA 16	<118 µg/l	kg TM218	<118		118	<118		<118	IVI	<118	IVI	<118	IVI

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 230718-44 Client Ref.: 6161 Report Number: 697982

TPH CWG (S)								
Results Legend # ISO17025 accredited.	Custo	omer Sample Ref.	TP01	TP02	TP03	TP04	TP05	TP06
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfillTotal / unfiltered sample. Subcontracted - refer to subcontractor repc accreditation status.		Depth (m) Sample Type Date Sampled Sample Time	0.50 - 0.50 Soil/Solid (S) 17/07/2023	0.50 - 0.50 Soil/Solid (S) 17/07/2023	0.50 - 0.50 Soil/Solid (S) 17/07/2023	0.50 - 0.50 Soil/Solid (S) 17/07/2023	0.50 - 0.50 Soil/Solid (S) 17/07/2023	0.50 - 0.50 Soil/Solid (S) 17/07/2023
** % recovery of the surrogate standard to che efficiency of the method. The results of indi compounds within samples aren't corrected recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	ividual d for the La	Date Received SDG Ref b Sample No.(s) AGS Reference	18/07/2023 230718-44 28344642	18/07/2023 230718-44 28344643	18/07/2023 230718-44 28344644	18/07/2023 230718-44 28344645	18/17/2023 2307/6-44 28344646	18/07/2023 230718-44 28344647
Component GRO Surrogate % recovery**	LOD/Únits %	Method TM089	104	96.8	99.2	95	92.4	114
,			-					× ₂
Aliphatics >C5-C6 (HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	V510
Aliphatics >C6-C8 (HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aliphatics >C8-C10 (HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aliphatics >C10-C12 (EH_2D_AL_#1)	<1000 µg/kg	TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aliphatics >C12-C16 (EH 2D AL #1)	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	<1000
Aliphatics >C16-C21	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	<1000
(EH_2D_AL_#1) Aliphatics >C21-C35	<1000 µg/kg	TM414	<1000	** <1000	<1000	<1000	<1000	<1000
(EH_2D_AL_#1) Aliphatics >C35-C44	<1000 µg/kg		* <1000	# <1000	<1000	# <1000	# <1000	<1000
(EH_2D_AL_#1) Total Aliphatics >C10-C44	<5000 µg/kg		<5000	<5000	<5000	<5000	<5000	<5000
(EH_2D_AR_#1)								
Total Aliphatics & Aromatics >C10-C44 (EH_2D_Total_#1)	μg/kg	TM414	<10000	<10000	<10000	<10000	<10000	<10000
Aromatics >EC5-EC7 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aromatics >EC7-EC8 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aromatics >EC8-EC10 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	<10
Aromatics > EC10-EC12 (EH_2D_AR_#1)	<1000 µg/kg	TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #
Aromatics > EC12-EC16 (EH_2D_AR_#1)	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	<1000
Aromatics > EC16-EC21 (EH_2D_AR_#1)	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	<1000 "
Aromatics > EC21-EC35 (EH_2D_AR_#1)	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	<1000
Aromatics >EC35-EC44	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	** <1000	<1000
(EH_2D_AR_#1) Aromatics > EC40-EC44	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	<1000
(EH_2D_AR_#1) Total Aromatics > EC10-EC44	<5000 µg/kg	TM414	<5000	<5000	<5000	<5000	<5000	<5000
(EH_2D_AR_#1) Total Aliphatics & Aromatics > C5-C44	<10000	TM414	<10000	<10000	<10000	<10000	<10000	<10000
(EH_2D_Total_#1+HS_1D_Total) GRO > C5-C6	μg/kg <20 μg/kg	TM089	<20	<20	<20	<20	<20	<20
(HS_1D) GRO >C6-C7	<20 μg/kg	TM089	<20	<20	<20	<20	<20	<20
(HS_1D) GRO >C7-C8		TM089	<20	<20	<20	<20	<20	<20
(HS_1D)	<20 µg/kg			-			-	-
GRO >C8-C10 (HS_1D)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20
GRO >C10-C12 (HS_1D)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20
Total Aliphatics >C5-C10 (HS_1D_AL_TOTAL)	<50 µg/kg	TM089	<50	<50	<50	<50	<50	<50
Total Aromatics >EC5-EC10 (HS_1D_AR_TOTAL)	<50 µg/kg	TM089	<50	<50	<50	<50	<50	<50
GRO >C5-C10 (HS_1D_TOTAL)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	<20
, /								

ALS

SDG: 230718-44 **Client Ref**.: 6161 Report Number: 697982

Superseded Report:

VOC Me (e)	2111 0101			Location. 1	VII BUSIIIESS Paik	2011C/Y		
VOC MS (S) Results Legend # ISO17025 accredited.	Cus	stomer Sample Ref.	TP01	TP02	TP03	TP04	TP05	TP06
# ISSTINUS accredited. # mCERTS accredited sample. diss.fill Dissolved filtered sample. tot.unfillt total / unfiltered sample. Subcontracted - refer to subcontractor rep accreditation status. # recovery of the surrogate standard to chefficiency of the method. The results of ind compounds within samples aren't correcte recomposed for the method of the results of ind compounds within samples aren't correcte recovery for the method. The results of ind compounds within samples aren't correcte recovery for confirmed 1-45§8 Sample deviation (see appendix)	neck the lividual d for the	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	Soil/Solid (S) 17/07/2023 18/07/2023 230718-44	0.50 - 0.50 Soil/Solid (S) 17/07/2023 18/07/2023 230718-44 28344643	0.50 - 0.50 Soil/Solid (S) 17/07/2023 18/07/2023 230718-44 28344644	0.50 - 0.50 Soil/Solid (S) 17/07/2023 18/07/2023 230718-44 28344645	0.50 - 0.50 Soil/Solid (S) 17/07/2023 18/07/2023 2307/16-14 28344046	0.50 - 0.50 Soil/Solid (S) 17/07/2023 18/07/2023 230718-44 28344647
Component	LOD/Únits	Method					70	
Dibromofluoromethane**	%	TM116	119	113	106	111	102	7 112
Toluene-d8**	%	TM116	100	102	101	102	100	401
4-Bromofluorobenzene**	%	TM116	94.7	99.4	98.7	93.4	95.3	93.1
Methyl Tertiary Butyl Ether	<0.5 µg/kç	TM116	<0.5 M	<0.5 M	<0.5	<0.5 M	<0.5 M	<0.5 M
Benzene	<1 µg/kg	TM116	<1 M	<1 M	<1 M	<1 M	<1 M	<1 M
Toluene	<1 µg/kg	TM116	<1 M	<1 M	<1 M	<1 M	<1 M	<1 M
Ethylbenzene	<1 µg/kg	TM116	<1 M	<1 M	<1 M	<1 M	<1 M	<1 M
p/m-Xylene	<2 µg/kg	TM116	<2 #	<2 #	<2 #	<2 #	<2 #	<2 #
o-Xylene	<2 µg/kg	TM116	<2 M	<2 M	<2 M	<2 M	<2 M	<2 M
1								

Landfill Waste Acceptance Criteria Limits

Case

ANC to pH 4 (mol/kg)

CERTIFICATE OF ANALYSIS

Report Number: 697982 SDG: 230718-44 **Superseded Report:** Client Ref.: 6161 Location: M1 Business Park - Zone A

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS		REF : BS EN 12457/2
Client Reference		Site Location	M Business Park - Zone A
Mass Sample taken (kg)	0.107	Natural Moisture Content (%)	18.7
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	84.2
Particle Size <4mm	>95%		90

	230718-44	1	Criteria Limit
mple Number(s)	28344642		
oled Date	17-Jul-2023		Stable Non-reactive
tomer Sample Ref.	TP01	Inert Waste Landfill	Hazardous Waste
Depth (m)	0.50 - 0.50	Lanami	in Non- Hazardous Landfill
lid Waste Analysis	Result		Lunum
Organic Carbon (%)	0.612	3	5
on Ignition (%)	4.69	-	-
of BTEX (mg/kg)	-	-	-
of 7 PCBs (mg/kg)	<0.021	1	-
eral Oil (mg/kg) (EH_2D_AL)	<5	500	-
Sum of 17 (mg/kg)	-40	100	-
	<10	100	
I (pH Units)	7.45	-	>6

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.0317	<0.0002	0.317	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.000428	<0.0003	0.00428	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	< 0.003	< 0.003	< 0.03	<0.03	0.5	10	30	
Nickel	0.000623	<0.0004	0.00623	<0.004	0.4	10	40	
Lead	0.000313	<0.0002	0.00313	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00872	<0.001	0.0872	<0.01	4	50	200	
Chloride	2.5	<2	25	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	25.5	<10	255	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	3.3	<3	33	<30	500	800	1000	
-								

Leach Test Information

Date Prepared	19-Jul-2023
pH (pH Units)	7.58
Conductivity (µS/cm)	36
Volume Leachant (Litres)	0.883

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Case

ANC to pH 4 (mol/kg)

CERTIFICATE OF ANALYSIS

SDG: 230718-44 Report Number: 697982 Superseded Report: Client Ref.: 6161 Location: M1 Business Park - Zone A

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RES	SULTS		REF : BS EN 12457/2
Client Reference		Site Location	M1 Business Park - Zone A
Mass Sample taken (kg)	0.112	Natural Moisture Content (%)	25.1
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	79.9
Particle Size <4mm	>95%		9

SDG	230718-44
ab Sample Number(s)	28344643
ampled Date	17-Jul-2023
ustomer Sample Ref.	TP02
Depth (m)	0.50 - 0.50
Solid Waste Analysis	Result
Total Organic Carbon (%)	0.399
oss on Ignition (%)	4.33
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
oH (pH Units)	6.05
NC to pH 6 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.000992	<0.0002	0.00992	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	<0.0003	<0.0003	<0.003	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	< 0.003	<0.03	<0.03	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	0.00173	<0.001	0.0173	<0.01	0.1	0.5	7
Zinc	0.00169	<0.001	0.0169	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	2.5	<2	25	<20	1000	20000	50000
Total Dissolved Solids	15.8	<10	158	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000

Leach Test Information

Date Prepared	19-Jul-2023
pH (pH Units)	6.92
Conductivity (µS/cm)	20
Volume Leachant (Litres)	0.878

 $Solid \ Results \ are \ expressed \ on \ a \ dry \ weight \ basis, \ after \ correction \ for \ moisture \ content \ where \ applicable$

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20 $\pm5^{\circ}$ C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Criteria Limit

CERTIFICATE OF ANALYSIS

Case

ANC to pH 4 (mol/kg)

SDG: 230718-44 Client Ref.: 6161

Report Number: 697982

Superseded Report:

Location: M1 Business Park - Zone A

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS		REF : BS EN 12457/2
Client Reference		Site Location	M Business Park - Zone A
Mass Sample taken (kg)	0.111	Natural Moisture Content (%)	23
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	81.3
Particle Size <4mm	>95%		9

	230718-44	(Criteria Limit
mple Number(s)	28344644		
mpled Date	17-Jul-2023		nazaruous waste
ustomer Sample Ref.	omer Sample Ref. TP03	Inert Waste Landfill	
Depth (m) Solid Waste Analysis	0.50 - 0.50	Landini	in Non- Hazardous Landfill
	Result		
tal Organic Carbon (%)	0.445	3	5
oss on Ignition (%)	4.26	-	-
um of BTEX (mg/kg)	-	-	-
um of 7 PCBs (mg/kg)	<0.021	1	-
fineral Oil (mg/kg) (EH_2D_AL)	<5	500	-
AH Sum of 17 (mg/kg)	<10	100	-
H (pH Units)	6.34	-	>6
NC to pH 6 (mol/kg)	-	-	-

Eluate Analysis	C ₂ Conc ⁿ in 10	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	j			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.0011	<0.0002	0.011	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.000584	<0.0003	0.00584	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	< 0.003	<0.003	< 0.03	<0.03	0.5	10	30	
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	22.9	<10	229	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	

Leach Test Information

Date Prepared	19-Jul-2023
pH (pH Units)	7.13
Conductivity (µS/cm)	30
Volume Leachant (Litres)	0.879

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

CERTIFICATE OF ANALYSIS

ALS

Case

ANC to pH 4 (mol/kg)

SDG: 230718-44 **Client Ref.:** 6161

Report Number: 697982

Superseded Report:

Location: M1 Business Park - Zone A

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RES	SULTS		REF : BS EN 12457/2
Client Reference		Site Location	M1 Business Park - Zone A
Mass Sample taken (kg)	0.110	Natural Moisture Content (%)	22.5
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	81.6
Particle Size <4mm	>95%		90

OG	230718-44
Lab Sample Number(s)	28344645
Sampled Date	17-Jul-2023
Customer Sample Ref.	TP04
Depth (m)	0.50 - 0.50
Solid Waste Analysis	Result
Solid Waste Allalysis	
Total Organic Carbon (%)	0.398
Loss on Ignition (%)	4.4
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	6.01
ANC to pH 6 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg			
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.000937	<0.0002	0.00937	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.000577	<0.0003	0.00577	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30	
Nickel	0.000401	<0.0004	0.00401	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00577	<0.001	0.0577	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	14	<10	140	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	

Leach Test Information

Date Prepared	19-Jul-2023
pH (pH Units)	7.20
Conductivity (µS/cm)	19
Volume Leachant (Litres)	0.880

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20 $\pm5^{\circ}$ C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

Case

CERTIFICATE OF ANALYSIS

SDG: 230718-44 Report Number: 697982 Superseded Report: Client Ref.: 6161 Location: M1 Business Park - Zone A

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS Client Reference Site Location M1 Business Park - Zone A Mass Sample taken (kg) 0.106 Mass of dry sample (kg) 0.090 Particle Size <4mm >95% REF: BS EN 12457/2 M1 Business Park - Zone A Natural Moisture Content (%) 17.9 By Matter Content (%) 84.8

SDG	230718-44
Lab Sample Number(s)	28344646
Sampled Date	17-Jul-2023
Customer Sample Ref.	TP05
Depth (m)	0.50 - 0.50
Solid Waste Analysis	Result
Total Organic Carbon (%)	0.642
Loss on Ignition (%)	7.29
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	6.62
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	_		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.0013	<0.0002	0.013	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	0.00362	<0.001	0.0362	<0.01	0.5	10	70
Copper	0.000575	<0.0003	0.00575	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	< 0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	2.5	<2	25	<20	1000	20000	50000
Total Dissolved Solids	23.7	<10	237	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.3	<3	33	<30	500	800	1000

Leach Test Information

Date Prepared	18-Jul-2023
pH (pH Units)	7.43
Conductivity (µS/cm)	34
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20 $\pm5^{\circ}$ C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

CERTIFICATE OF ANALYSIS

Report Number: 697982 SDG: 230718-44 Superseded Report: Client Ref.: 6161 Location: M1 Business Park - Zone A

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS		REF : BS EN 12457/2
Client Reference		Site Location	M Business Park - Zone A
Mass Sample taken (kg)	0.104	Natural Moisture Content (%)	16.4
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	85.9
Particle Size <4mm	>95%		9

Case	Landf	II Waste Accept	
SDG	230718-44		Criteria Limits
Lab Sample Number(s)	28344647		
Sampled Date	17-Jul-2023		Stable Non-reactive
Customer Sample Ref.	TP06	Inert Waste	Hazardous Waste

Depth (m) Solid Waste Analysis	0.50 - 0.50		Landfill	in Non- Hazardous Landfill
	Result	Result		Landilli
arbon (%)	0.645		3	5
%)	5.22		-	-
g/kg)	-		-	-
(mg/kg)	<0.021		1	-
/kg) (EH_2D_AL)	<5		500	-
7 (mg/kg)	<10		100	-
	8.03		-	>6
mol/kg)	-		-	-
nol/kg)	-		-	-

Eluate Analysis	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00217	<0.0002	0.0217	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	0.00247	<0.001	0.0247	<0.01	0.5	10	70
Copper	0.00115	<0.0003	0.0115	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.0102	<0.003	0.102	<0.03	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	0.00347	<0.001	0.0347	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	0.722	<0.5	7.22	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	75.7	<10	757	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000

Leach Test Information

Date Prepared	18-Jul-2023
pH (pH Units)	8.38
Conductivity (µS/cm)	104
Volume Leachant (Litres)	0.885

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

SDG: 230718-44 Report Number: 697982 Superseded Report: Client Ref.: 6161 Location: M1 Business Park - Zone A

Table of Results - Appendix

Method No	Description $?$
TM104	Determination of Fluoride using the Kone Analyser
TM183	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM414	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID
PM115	Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step Determination of Loss on Ignition Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water Determination of Volatile Organic Compounds by Headspace / GC-MS
TM018	Determination of Loss on Ignition
TM090	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM116	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM123	The Determination of Total Dissolved Solids in Water
TM132	ELTRA CS800 Operators Guide
TM133	Determination of pH in Soil and Water using the GLpH pH Meter
TM259	Determination of Phenols in Waters and Leachates by HPLC
TM410	Determination of Coronene in soils by GCMS
PM024	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM089	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM151	Determination of Hexavalent Chromium using Kone analyser
TM181	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM152	Analysis of Aqueous Samples by ICP-MS
TM168	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM218	The determination of PAH in soil samples by GC-MS
TM256	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM415	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

SDG: 230718-44 Client Ref.: 6161 Report Number: 697982

Superseded Report:

Location: M1 Business Park - Zone A

Test Completion Dates

Lab Sample No(s)	28344642	28344643	28344644	28344645	28344646	28344647
Customer Sample Ref.	TP01	TP02	TP03	TP04	TP05	TP06
AGS Ref.						
Depth	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (w)	22-Jul-2023	22-Jul-2023	22-Jul-2023	22-Jul-2023	21-Jul-2023	21-Jul-2023
CEN 10:1 Leachate (1 Stage)	19-Jul-2023	19-Jul-2023	19-Jul-2023	19-Jul-2023	19-Jul-2023	19-Jul-2023
CEN Readings	21-Jul-2023	24-Jul-2023	24-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
Chromium III	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	20-Jul-2023	21-Jul-2023
Coronene	21-Jul-2023	24-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
Dissolved Metals by ICP-MS	25-Jul-2023	24-Jul-2023	25-Jul-2023	24-Jul-2023	25-Jul-2023	25-Jul-2023
Dissolved Organic/Inorganic Carbon	22-Jul-2023	22-Jul-2023	22-Jul-2023	22-Jul-2023	22-Jul-2023	22-Jul-2023
EPH by GCxGC-FID	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	21-Jul-2023
EPH CWG GC (S)	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023
Fluoride	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023
GRO by GC-FID (S)	21-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	19-Jul-2023	19-Jul-2023
Hexavalent Chromium (s)	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	19-Jul-2023	19-Jul-2023
Loss on Ignition in soils	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	19-Jul-2023	19-Jul-2023
Mercury Dissolved	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	21-Jul-2023	25-Jul-2023
Metals in solid samples by OES	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
Moisture at 105C	19-Jul-2023	19-Jul-2023	19-Jul-2023	19-Jul-2023	18-Jul-2023	18-Jul-2023
PAH 16 & 17 Calc	21-Jul-2023	24-Jul-2023	22-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
PAH by GCMS	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
PCBs by GCMS	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	21-Jul-2023	24-Jul-2023
pH	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	20-Jul-2023	20-Jul-2023
pH Value of Filtered Water	21-Jul-2023	24-Jul-2023	24-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
Phenols by HPLC (W)	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023
Sample description	19-Jul-2023	19-Jul-2023	19-Jul-2023	19-Jul-2023	18-Jul-2023	18-Jul-2023
Total Dissolved Solids on Leachates	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023	24-Jul-2023
Total Organic Carbon	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023	21-Jul-2023
TPH CWG GC (S)	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023	25-Jul-2023
VOC MS (S)	20-Jul-2023	20-Jul-2023	20-Jul-2023	20-Jul-2023	19-Jul-2023	19-Jul-2023

PRICEINED. TO ON ROOM

SDG: 230718-44 **Client Ref:** 6161

Report Number: 697982

Superseded Report:

Location: M1 Business Park - Zone A

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
Ø)	Sampled on date not provided
	2 3 4 •

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysot le	White Asbests
Amosite	Brown Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website:www.alsenvironmental.co.uk

CENED. 70/04/2024

CERTIFICATE OF ANALYSIS

Date of report Generation:07 August 2023Customer:Site Investigations Ltd

Sample Delivery Group (SDG): 230801-33 Your Reference: 6161A

Location: M1 Business Park-Zone A

 Report No:
 699265

 Order Number:
 47/A/23

We received 6 samples on Monday July 31, 2023 and 6 of these samples were scheduled for analysis which was completed on Monday August 07, 2023. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: 230801-33 Report Number: 699265 Superseded Report: Client Ref.: 6161A Location: M1 Business Park-Zone A

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Deoth (m)	Sampled Date
28412218	TP 01		1.00 1.00	28/07/2023
28412219	TP 02		1.00 - 1.00	28/07/2023
28412220	TP 03		1.00 - 1.06	28/07/2023
28412221	TP 04		1.00 - 1.00	28/07/2023
28412222	TP 05		1.00 - 1.00	28/07/2023
28412223	TP 06		1.00 - 1.00	28/07/2023

Only received samples which have had analysis scheduled will be shown on the following pages.

14:13:20 07/08/2023

x x x x x x

Superseded Report:

		CERTIFICATE OF ANALTSIS										
	Cli	SDG: ent Ref.:	230801-33 6161A		Re	port		mbei ation			siness Park-Zone	upo A
	Results Legend X Test N No Determ	ination	Lab Sample	No(s)	28412218	28412219	28412220	28412221	28412222	28412223		
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other		Custome Sample Refe		TP 01	TP 02	TP 03	TP 04	TP 05	TP 06			
		AGS Refere	ence									
		Depth (n	n)	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00			
		er	Containe	er	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)	250g Amber Jar (ALE210)		
			Sample Ty	/pe	S	S	S	S	S	S		
	Loss on Ignition in soils		All	NDPs: 0 Tests: 6	Х	Х	Х	Х	Х	X		
	Sample description		All	NDPs: 0 Tests: 6								
					V	V	~	V	~	~	1	

PRICEINED. 7000 POR

Validated

SDG: 230801-33 Client Ref.: 6161A Report Number: 699265

265 Superseded Report:

Location: M1 Business Park-Zone A

Sample Descriptions

Grain Sizes					•	PA	
very fine <0.0	0.063mm fine 0.06	3mm - 0.1mm m	edium 0.1mn	n - 2mm coai	rse 2mm - 1	.0mm very coa	arse >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
28412218	TP 01	1.00 - 1.00	Dark Brown	Sandy Clay Loam	Stones	None	_
28412219	TP 02	1.00 - 1.00	Light Brown	Sandy Clay Loam	Stones	None	9
28412220	TP 03	1.00 - 1.00	Dark Brown	Silty Clay Loam	Stones	None	0/0 _{4/2024}
28412221	TP 04	1.00 - 1.00	Dark Brown	Clay	Stones	None	CZ.
28412222	TP 05	1.00 - 1.00	Light Brown	Sandy Clay Loam	Stones	None	
28412223	TP 06	1.00 - 1.00	Light Brown	Sandy Clay Loam	Stones	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 230801-33 Client Ref.: 6161A

Report Number: 699265

Superseded Report: Location: M1 Business Park-Zone A

Results Legend

\$ ISO17025 accredited.

M mCERTS accredited.

a Aqueous / settled sample.

diss.filt Dissolved / filtered sample.

tot.unfillt rotal / unfiltered sample.

Subcontracted - refer to subcontractor report for accreditation status.

% recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Customer Sample Ref. TP 01 TP 02 TP 03 TP 04 TP 05 TP 06 Depth (m) Sample Type Date Sampled Sample Time 1.00 - 1.00 1.00 - 1.00 1.00 - 1.00 1.00 - 1.00 Soil/Solid (S) 1.00 - 1.00 Soil/Solid (S) 1.00 - 1.00 Soil/Solid (S) Soil/Solid (S) Soil/Solid (S) Soil/Solid (S) 28/07/2023 28/07/2023 28/07/2023 28/07/2023 28/07/2023 28/07/2023 31/07/2023 230801-33 31/07/2023 230801-33 31/07/2023 230801-33 31/07/2023 230801-33 31/07/2023 230801-33 31/07/2023 230801-33 Date Received SDG Ref recovery
(F) Trigger breach confirmed
1-4+§@ Sample deviation (see appendix) 28412218 28412219 28412220 28412221 28412222 28412223 Lab Sample No.(s) AGS Reference Component LOD/Units Method Moisture Content Ratio (% of as PM024 12 20 19 17 14 14 % received sample) Loss on ignition <0.7 % TM018 3.96 5.31 4.36 4.93 4.23 **Q**4,07 М M M M M M

Validated

SDG: 230801-33 Client Ref.: 6161A

Report Number: 699265

Superseded Report:

Location: M1 Business Park-Zone A

Table of Results - Appendix

	• • • • • • • • • • • • • • • • • • •
Method No	Description • • • • • • • • • • • • • • • • • • •
PM024	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM018	Determination of Loss on Ignition
NA = not applicable. Chemical testing (unless subconti	racted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

14:13:20 07/08/2023

Page 6 of 8

Validated

CERTIFICATE OF ANALYSIS

SDG: 230801-33 Client Ref.: 6161A

Report Number: 699265

Superseded Report:

Location: M1 Business Park-Zone A

Test Completion Dates

Lab Sample No(s)	28412218	28412219	28412220	28412221	28412222	28412223
Customer Sample Ref.	TP 01	TP 02	TP 03	TP 04	TP 05	TP 06
AGS Ref.						
Depth	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00	1.00 - 1.00
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Loss on Ignition in soils	04-Aug-2023	07-Aug-2023	07-Aug-2023	04-Aug-2023	07-Aug-2023	04-Aug-2023
Sample description	02-Aug-2023	02-Aug-2023	02-Aug-2023	02-Aug-2023	02-Aug-2023	02-Aug-2023

CERTIFICATE OF ANALYSIS

SDG: 230801-33 Client Ref: 6161A Report Number: 699265 Superseded Report:

Location: M1 Business Park-Zone A

Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

Leneral except 4 by the 18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with exponentiation above the LoD are subjected.

analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

	1	Container with Headspace provided for volatiles analysis
	2	Incorrect container received
	3	Deviation from method
	4	Matrix interference
1	•	Sample holding time exceeded in laboratory
	(0)	Sample holding time exceeded due to late arrival of instructions or samples
	8	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name						
Chrysot le	White Asbests						
Amosite	Brown Asbestos						
Cro d dolite	Blue Asbe stos						
Fibrous Act nolite	•						
Fib to us Anthop hyll ite	-						
Fibrous Tremolite	-						

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

PRICEINED. 7000 POR ROLD

Appendix 9 Waste Classification Report

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

VGH16-LCB4P-F3TG

Job name

6161A

Description/Comments

Client: Vida M1 Limited

Engineer: Clifton Scannell Emerson Associates

Project Site

M1 Business Park - Zone A Balbriggan, Co. Dublin

Classified by

Name: Company:

Stephen Letch Site Investigations Ltd

Date: The Grange

10 Aug 2023 09:39 GMT 12th Lock Road Lucan

 Telephone:
 Lucan
 Course

 00353 86817 9449
 K78 F598
 Hazardous Wa

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

™ Certification: CERTIFIED

Date

Hazardous Waste Classification 09 Oct 2019 Most recent 3 year Refresher 04 Oct 2022

Next 3 year Refresher due by Oct 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

M1 Business Park - Zone A, Balbriggan, Co. Dublin

Post Code N/A

SIC for the process giving rise to the waste

43130 Test drilling and boring

Description of industry/producer giving rise to the waste

Site Investigation

Description of the specific process, sub-process and/or activity that created the waste

Soils recovered for environmental testing

Description of the waste

Natural soils

Job summary

						\ /\	
#	Sample name	Depth [m]	Classification Result	Hazard properties	WAC Re	esults 🔾.	- Page
π	Sample name	Deptil [iii]	Classification (tesuit	riazaru properties	Inert	Non Haz /	- rage
1	TP01-0.50	0.50	Non Hazardous		Pass	Pass	3
2	TP02-0.50	0.50	Non Hazardous		Pass	Pass	N7
3	TP03-0.50	0.50	Non Hazardous		Pass	Pass	142
4	TP04-0.50	0.50	Non Hazardous		Pass	Pass	15 💝
5	TP05-0.50	0.50	Non Hazardous		Pass	Pass	19
6	TP06-0.50	0.50	Non Hazardous		Pass	Pass	23

Related documents

# Name	Description
1 230718-44.hwol	ALS Hawarden .hwol file used to populate the Job
2 Rilta Suite NEW	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report

Created by: Stephen Letch Created date: 10 Aug 2023 09:39 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	27
Appendix B: Rationale for selection of metal species	28
Appendix C: Version	29

Page 2 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Classification of sample: TP01-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

03)

79/04/2024

Sample details

Sample name: LoW Code:

TP01-0.50 Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.50 m Entry: 17: 05 04 (Soil and stones other than those mentioned in 17:05

Moisture content:

12%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	l IOT arisen from die			Ø							
3	4	antimony { antimon	<mark>ly trioxide</mark> } 215-175-0	1309-64-4		2.36	mg/kg	1.197	2.486	mg/kg	0.000249 %	√	
4	4	arsenic { arsenic pe	entoxide } 215-116-9	1303-28-2		18.9	mg/kg	1.534	25.511	mg/kg	0.00255 %	✓	
5	4	barium { • barium 016-002-00-X	sulphide }	21109-95-5		77.1	mg/kg	1.233	83.69	mg/kg	0.00837 %	√	
6	4	cadmium { cadmiur 048-009-00-9	<mark>m sulfate</mark> } 233-331-6	10124-36-4		1.1	mg/kg	1.855	1.795	mg/kg	0.00018 %	✓	
7	_	copper { dicopper o	oxide; copper (I) ox 215-270-7	i <mark>ide</mark> } 1317-39-1		43.6	mg/kg	1.126	43.198	mg/kg	0.00432 %	✓	
8	4	lead { lead compospecified elsewhere 082-001-00-6			1	13.4	mg/kg		11.792	mg/kg	0.00118 %	✓	
9	+	mercury { mercury	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4		y <mark>bdenum(VI) oxide</mark> 215-204-7	} 1313-27-5		4.68	mg/kg	1.5	6.178	mg/kg	0.000618 %	✓	
11	æ.	nickel { nickel sulfate 028-009-00-5	te } 232-104-9	7786-81-4		42.3	mg/kg	2.637	98.148	mg/kg	0.00981 %	✓	
12		selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those s			2.05	mg/kg	1.405	2.535	mg/kg	0.000253 %	✓	
13	4	zinc { zinc sulphate	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		57.5	mg/kg	2.469	124.946	mg/kg	0.0125 %	√	
14	æ	chromium in chrom		ls {		16.3	mg/kg	1.462	20.965	mg/kg	0.0021 %	✓	

	7				_								I
#		ELL CL D in day	Determinand EC Number	CAC Niversham	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MCApplied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	S							Ž.	7.
15		chromium in chrom <mark>oxide</mark> }				<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lg0< td=""></lg0<>
	-		215-607-8	1333-82-0									
16		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17 9	+	acenaphthylene	205-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18		acenaphthene	201-469-6	83-32-9		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19 9		fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20 0		phenanthrene	201-581-5	85-01-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	-	anthracene	204-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22		fluoranthene	205-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23		pyrene	204-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24	L	benzo[a]anthracen	e 200-280-6	56-55-3		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27	L	benzo[k]fluoranthe	ne 205-916-6	207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
28	L	benzo[a]pyrene; be	enzo[def]chrysene 200-028-5	50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	-	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30	L	dibenz[a,h]anthrac	ene 200-181-8	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31		benzo[ghi]perylene	205-883-8	191-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	- 1	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35	ŀ	toluene	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	,	ethylbenzene	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	+	coronene	205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	-	рН	(PH		7.45	рН		7.45	рН	7.45 pH		
\vdash	o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]												
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
	1		215-535-7 [4]	1330-20-7 [4]	L					Total:	0.0433 %		

Page 4 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP01-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the citual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The DASSES the Inert (Inert waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.612	3	5
2	LOI (loss on ignition)	%	4.69	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	pН	7.45	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.317	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0042	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0062	0.4	10
17	lead	mg/kg	0.0031	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0872	4	50
21	chloride	mg/kg	25	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	33	500	800
26	TDS (total dissolved solids)	mg/kg	255	4,000	60,000

Key

User supplied data

Page 6 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Classification of sample: TP02-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste 79/04/2024

Sample details

Sample name: LoW Code:

TP02-0.50 Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.50 m Entry: 17: 05 04 (Soil and stones other than those mentioned in 17:05

03)

Moisture content:

17%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	lOT arisen from die	1		✓							
3	4	antimony { antimor	hy trioxide }	1309-64-4		2.21	mg/kg	1.197	2.196	mg/kg	0.00022 %	✓	
4	-	arsenic { arsenic po		1303-28-2		21.5	mg/kg	1.534	27.372	mg/kg	0.00274 %	✓	
5	æ	barium { [®] barium		21109-95-5		66.1	mg/kg	1.233	67.673	mg/kg	0.00677 %	✓	
6	_	cadmium { cadmiui		10124-36-4		0.292	mg/kg	1.855	0.449	mg/kg	0.0000449 %	✓	
7	_	copper { dicopper o	oxide; copper (I) ox 215-270-7	ide } 1317-39-1		31.7	mg/kg	1.126	29.623	mg/kg	0.00296 %	✓	
8	4	lead { • lead comp specified elsewhere			1	13.9	mg/kg		11.537	mg/kg	0.00115 %	√	
9	-	mercury { mercury	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	æ	molybdenum { moly		} 1313-27-5		5.15	mg/kg	1.5	6.413	mg/kg	0.000641 %	✓	
11	4	nickel { nickel sulfa 028-009-00-5	te } 232-104-9	7786-81-4		31	mg/kg	2.637	67.842	mg/kg	0.00678 %	✓	
12		selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			3.86	mg/kg	1.405	4.501	mg/kg	0.00045 %	✓	
13	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	231-793-3 [1]	7446-19-7 [1] 7733-02-0 [2]		45.7	mg/kg	2.469	93.663	mg/kg	0.00937 %	√	
14	4	chromium in chrom chromium(III) oxide		s { •		22.3	mg/kg	1.462	27.052	mg/kg	0.00271 %	✓	

Formal Figure F		_											
Section Community Compounds Chromium(VI) Compounds Chromium Chromium(VI) Compounds Chromium Chromium(VI) Compounds Chromium Chromium Chromium(VI) Compounds Chromium Ch	#		FILOUR in the		OAO Niwakan	⊃ Note	User entered	l data		Compound	conc.	Classification value	Conc. Not
Sexiste			number			S							Z Z Z
16	15	•	oxide }		, , ,		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %	<lod< td=""></lod<>
10 801-082-00-2 202-049-5 61-20-3		(15-607-8	1333-82-0								-
17	16	6	•	02-049-5	91-20-3		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %	<lod< td=""></lod<>
18	17	•		05-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %	<lod< td=""></lod<>
19	18		acenaphthene				<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %	<lod< td=""></lod<>
20	19 9	•	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<lod< td=""></lod<>
21	20 0	•	phenanthrene				<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<lod< td=""></lod<>
204-371-1 120-12-7 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-44-0 208-48-1 1836-36-3 20.017 mg/kg <0.000017 % <1 21 22 22 22 23 23 23 2	21 0			01-581-5	85-01-8		<0.016	ma/ka		<0.016	ma/ka	<0.0000016 %	<lod< td=""></lod<>
23 pyrene 20.017 mg/kg 20.000017% 24		4		04-371-1	120-12-7								
24	22	1		05-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %	<lod< td=""></lod<>
24	23	•		04-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<lod< td=""></lod<>
Solidation Sol	24	6		00-280-6	56-55-3		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %	<lod< td=""></lod<>
20	25	- 1	*	05-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<lod< td=""></lod<>
Denzo[k]fluoranthene	26				205-99-2		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<lod< td=""></lod<>
benzo[a]pyrene; benzo[def]chrysene	27	1	benzo[k]fluoranthene	Э			<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %	<lod< td=""></lod<>
101-032-00-3 200-028-5 50-32-8 104-032-00-3 200-028-5 50-32-8 104-032-00-3 200-028-5 50-32-8 104-032-00-3 200-028-5 193-39-5 193-39-5 193-39-5 193-39-5 193-39-5 193-39-5 193-39-5 103-041-00-2 200-181-8 53-70-3 103-041-00-2 200-181-8 53-70-3 103-041-00-2 200-181-8 103-04-1 103-041-4 1	20				207-00-9		40.04F	/le		-0.045		40 000004F 0/	<lod< td=""></lod<>
205-893-2 193-39-5 20.018 mg/kg 20.000018 mg/kg 20.0000018 mg/kg 20.0000018 mg/kg 20.0000018 mg/kg 20.0000018 mg/kg 20.0000018 mg/kg 20.0000023 mg/kg 20.0000023 mg/kg 20.0000023 mg/kg 20.0000023 mg/kg 20.0000023 mg/kg 20.0000023 mg/kg 20.0000023 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000024 mg/kg 20.0000021 mg/kg 20.0000021 mg/kg 20.00000021 mg/kg 20.00000005 mg/kg 20.00000005 mg/kg 20.00000005 mg/kg 20.00000005 mg/kg 20.00000005 mg/kg 20.00000001 mg/kg 20.0000001 mg/kg 20.00000001 mg/kg 20.0000001 mg/kg 20.00000001 mg/kg 20.00000001 mg/kg 20.00000001 mg/kg 20.00000001 mg/kg 20.0000000000000000000000000000000000	-	-			50-32-8		<u> </u>	mg/kg		<0.015	mg/kg	<0.0000015 %	\LOD
30	29	'			193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %	<lod< td=""></lod<>
205-883-8 191-24-2	30	6			53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %	<lod< td=""></lod<>
32	31	•		05-883-8	191-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %	<lod< td=""></lod<>
2-meth/xy-2-methylpropane	32				1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %	<lod< td=""></lod<>
Senzene Senz	33		tert-butyl methyl ethe 2-methoxy-2-methylp	er; MTBE; propane			<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %	<lod< td=""></lod<>
toluene	34		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<lod< td=""></lod<>
36 ethylbenzene	35		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<lod< td=""></lod<>
37 © coronene													

Page 8 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP02-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the citual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The DASSES the Inert (Inert waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.399	3	5
2	LOI (loss on ignition)	%	4.33	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	6.05	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0099	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	<0.003	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	0.0173	0.1	0.5
20	zinc	mg/kg	0.0169	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	25	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	158	4,000	60,000

Key

User supplied data

Page 10 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Classification of sample: TP03-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste 79/04/2024

Sample details

Sample name: LoW Code:

TP03-0.50 Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

0.50 m Entry: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

03)

Moisture content:

16%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
		5 70111	 	TPH									
2	0	confirm TPH has N	IOT arisen from di	esel or petrol	-	✓							
3	4					0.831	mg/kg	1.197	0.836	mg/kg	0.0000836 %	1	
			215-175-0	1309-64-4								_	
4	4		entoxide } 215-116-9	1303-28-2		23.4	mg/kg	1.534	30.15	mg/kg	0.00301 %	✓	
5	æ	barium { • barium		21109-95-5		90.3	mg/kg	1.233	93.563	mg/kg	0.00936 %	√	
6	4	cadmium { cadmiu 048-009-00-9	m sulfate }	10124-36-4		0.878	mg/kg	1.855	1.368	mg/kg	0.000137 %	✓	
7	4	copper { dicopper of 029-002-00-X	oxide; copper (I) ox	kide }		27.9	mg/kg	1.126	26.386	mg/kg	0.00264 %	✓	
8	æ\$	lead { lead compospecified elsewhere			1	12.9	mg/kg		10.836	mg/kg	0.00108 %	√	
9	æ.		dichloride }		+	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
L		080-010-00-X	231-299-8	7487-94-7		-0.1		1.000	-0.100		10.0000100 70		1205
10	ď		ybdenum(VI) oxide 215-204-7	1313-27-5		5.96	mg/kg	1.5	7.511	mg/kg	0.000751 %	✓	
11	æ	nickel { nickel sulfa		7786-81-4		34.7	mg/kg	2.637	76.854	mg/kg	0.00769 %	√	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those s			1.95	mg/kg	1.405	2.301	mg/kg	0.00023 %	√	
	ell.	zinc { zinc sulphate	<u> </u> 		+								
13		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		61.2	mg/kg	2.469	126.942	mg/kg	0.0127 %	✓	
14	æ\$	chromium in chrom		ds { • 1308-38-9		52.3	mg/kg	1.462	64.209	mg/kg	0.00642 %	✓	
	1		E 10-100-8	1000-00-8							[1	

	_												
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Ω.Ι	c. Not sed
	æ.	number chromium in chrom	ium(VI) compound		ō							9	
15	•	oxide }	215-607-8	1333-82-0		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %	<[60
16		naphthalene				<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %	<l< td=""><td>_OD</td></l<>	_OD
17	0	acenaphthylene		91-20-3		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %	<l< td=""><td>_OD</td></l<>	_OD
18	0	acenaphthene	205-917-1	208-96-8		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %	<l< td=""><td>_OD</td></l<>	_OD
	0	fluorene	201-469-6	83-32-9									
19		ľ	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<l< td=""><td>_OD</td></l<>	_OD
20	Θ	phenanthrene	201-581-5	85-01-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<l< td=""><td>OD</td></l<>	OD
21	0	anthracene	204-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %	<l< td=""><td>OD</td></l<>	OD
22	0	fluoranthene	205-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %	<l< td=""><td>.OD</td></l<>	.OD
23	0	pyrene	204-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<l< td=""><td>.OD</td></l<>	.OD
24		benzo[a]anthracene	Э			<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %	<l< td=""><td>_OD</td></l<>	_OD
25		chrysene		56-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<l< td=""><td>.OD</td></l<>	.OD
26		601-048-00-0 benzo[b]fluoranther		218-01-9		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		OD.
20			205-911-9	205-99-2		10.010					40.0000010 70		.05
27		benzo[k]fluoranther 601-036-00-5		207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %	<l< td=""><td>_OD</td></l<>	_OD
28		benzo[a]pyrene; be 601-032-00-3		50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<l< td=""><td>OD</td></l<>	OD
29	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %	<l< td=""><td>.OD</td></l<>	.OD
30		dibenz[a,h]anthrace	ene	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %	<l< td=""><td>.OD</td></l<>	.OD
31	0	benzo[ghi]perylene				<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %	<l< td=""><td>_OD</td></l<>	_OD
32	0	polychlorobiphenyls	205-883-8 s; PCB	191-24-2		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %	<l< td=""><td>_OD</td></l<>	_OD
		602-039-00-4 tert-butyl methyl eth	215-648-1 ner; MTBE;	1336-36-3							0.000021 70	+-	
33		2-methoxy-2-methy		1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %	<l< td=""><td>OD</td></l<>	OD
34		benzene		71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<l< td=""><td>_OD</td></l<>	_OD
35		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<l< td=""><td>.OD</td></l<>	.OD
36	0	ethylbenzene	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<i< td=""><td>.OD</td></i<>	.OD
	0	601-023-00-4 coronene	202-849-4	100-41-4									
37	,	ĺ	205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %	<l< td=""><td>_OD</td></l<>	_OD
38	0	pH		PH		6.34	рН		6.34	рН	6.34 pH		
39			ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	8] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %	<l< td=""><td>_OD</td></l<>	_OD
										Total:	0.0453 %		

Page 12 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP03-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the citual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The DASSES the Inert (Inert waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.445	3	5
2	LOI (loss on ignition)	%	4.26	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	6.34	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.011	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0058	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	229	4,000	60,000

Key

User supplied data

Page 14 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Classification of sample: TP04-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

10/04/2024

Sample details

Sample name: LoW Code:

TP04-0.50 Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.50 m Entry: 17: 05 04 (Soil and stones other than those mentioned in 17:05

03)

Moisture content:

15%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	OT arisen from die			✓							
3	4	antimony { antimon 051-005-00-X	<mark>y trioxide</mark> } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pe 033-004-00-6	entoxide } 215-116-9	1303-28-2		9.9	mg/kg	1.534	12.908	mg/kg	0.00129 %	√	
5	4	barium {	sulphide }	21109-95-5		64.4	mg/kg	1.233	67.521	mg/kg	0.00675 %	✓	
6	4	cadmium { cadmiur 048-009-00-9	<mark>n sulfate</mark> } 233-331-6	10124-36-4		0.154	mg/kg	1.855	0.243	mg/kg	0.0000243 %	√	
7	_	copper { dicopper o	oxide; copper (I) ox 215-270-7	tide }		19.5	mg/kg	1.126	18.662	mg/kg	0.00187 %	✓	
8	æ.	lead { lead compospecified elsewhere			1	11.9	mg/kg		10.115	mg/kg	0.00101 %	√	
9	4	mercury { mercury	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	æ.	molybdenum { moly 042-001-00-9	y <mark>bdenum(VI) oxide</mark> 215-204-7	} 1313-27-5		2.7	mg/kg	1.5	3.443	mg/kg	0.000344 %	✓	
11	æ.	nickel { nickel sulfat 028-009-00-5	te } 232-104-9	7786-81-4		17.5	mg/kg	2.637	39.221	mg/kg	0.00392 %	√	
12		selenium { selenium cadmium sulphoselelsewhere in this A 034-002-00-8	lenide and those s			2	mg/kg	1.405	2.389	mg/kg	0.000239 %	√	
13	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	} 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		45.2	mg/kg	2.469	94.87	mg/kg	0.00949 %	√	
14	æ	chromium in chrom chromium(III) oxide		ls {		23.8	mg/kg	1.462	29.567	mg/kg	0.00296 %	✓	

	_												
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	₩.	nc. Not Jsed
	æ.	number	ium(VI) compound		ਹ							ى/	
15	•	oxide }	215-607-8	1333-82-0		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %	<	rop
16		naphthalene				<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %	<	LOD
17	0	acenaphthylene		91-20-3		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %	<	LOD
18	0	acenaphthene	205-917-1	208-96-8		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %	<	LOD
	0	fluorene	201-469-6	83-32-9									
19		4	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
20	Θ	phenanthrene	201-581-5	85-01-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<	LOD
21	0	anthracene	204-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %	<	LOD
22	0	fluoranthene	205-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %	<	LOD
23	0	pyrene				<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<	LOD
24		benzo[a]anthracene		129-00-0		<0.014	mg/kg		<0.014	mg/kg	<0.000014 %	<	LOD
25		601-033-00-9 chrysene	200-280-6	56-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %	<	LOD
26		601-048-00-0 [benzo[b]fluoranther		218-01-9					<0.015		<0.0000015 %		LOD
20			205-911-9	205-99-2		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		LOD
27			205-916-6	207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %	<	LOD
28		benzo[a]pyrene; be		50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	<	LOD
29	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %	<	LOD
30		dibenz[a,h]anthrace	ene	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %	<	LOD
31	Θ	benzo[ghi]perylene				<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %	<	LOD
32	0	polychlorobiphenyls	205-883-8 s; PCB	191-24-2		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %	<	LOD
-		602-039-00-4 tert-butyl methyl eth	215-648-1 ner: MTBE:	1336-36-3		-0.021			-0.021		-0.000021 70		
33		2-methoxy-2-methy		1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %	<	LOD
34		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<	LOD
35		toluene		71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	<	LOD
36	0	ethylbenzene	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		LOD
H		601-023-00-4 (coronene	202-849-4	100-41-4									
37	9	4	205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %	<	LOD
38	Θ	pH (PH		6.01	pН		6.01	pН	6.01 pH		_
39			ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	8] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %	<	LOD
		`						'		Total:	0.0291 %		

Page 16 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP04-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the citual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The DASSES the Inert (Inert waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.398	3	5
2	LOI (loss on ignition)	%	4.4	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	pН	6.01	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0093	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0057	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0577	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	140	4,000	60,000

Key

User supplied data

Page 18 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Classification of sample: TP05-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste 79/08/202

Sample details

Sample name: LoW Code:

TP05-0.50 Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.50 m Entry: 17: 05 04 (Soil and stones other than those mentioned in 17:05

03)

Moisture content:

11%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	OT arisen from die			✓							
3	4	antimony { antimon 051-005-00-X	<mark>y trioxide</mark> } 215-175-0	1309-64-4		2.45	mg/kg	1.197	2.61	mg/kg	0.000261 %	√	
4	4	arsenic { arsenic pe	entoxide } 215-116-9	1303-28-2		20.8	mg/kg	1.534	28.395	mg/kg	0.00284 %	✓	
5	4	barium { • barium 016-002-00-X	sulphide }	21109-95-5		98.1	mg/kg	1.233	107.695	mg/kg	0.0108 %	√	
6	4	cadmium { cadmium	<mark>n sulfate</mark> } 233-331-6	10124-36-4		1.91	mg/kg	1.855	3.153	mg/kg	0.000315 %	√	
7	_	copper { dicopper o	oxide; copper (I) ox 215-270-7	ide } 1317-39-1		68.4	mg/kg	1.126	68.54	mg/kg	0.00685 %	✓	
8	æ	lead { lead compospecified elsewhere 082-001-00-6			1	16.6	mg/kg		14.774	mg/kg	0.00148 %	√	
9	+	mercury { mercury	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	æ\$		/bdenum(VI) oxide 215-204-7	} 1313-27-5		5.46	mg/kg	1.5	7.29	mg/kg	0.000729 %	✓	
11	æ.	nickel { nickel sulfat	te } 232-104-9	7786-81-4		57.9	mg/kg	2.637	135.871	mg/kg	0.0136 %	√	
12		selenium { selenium cadmium sulphosel elsewhere in this Ai 034-002-00-8	lenide and those s			2.64	mg/kg	1.405	3.301	mg/kg	0.00033 %	√	
13	4	zinc { zinc sulphate	} 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		70.6	mg/kg	2.469	155.156	mg/kg	0.0155 %	√	
14	4	chromium in chrom		s { [®]		25.4	mg/kg	1.462	33.04	mg/kg	0.0033 %	✓	

											_	1
#	FIL OLD index	Determinand	CAC Nivershau	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	EU CLP index number	EC Number	CAS Number	CLI							M	7_
15	oxide }				<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lg0< td=""></lg0<>
	024-001-00-0	215-607-8	1333-82-0									
16	naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17 9	acenaphthylene	205-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	acenaphthene	201-469-6	83-32-9		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19 9	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20 0	phenanthrene	201-581-5	85-01-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	anthracene	204-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22 0	fluoranthene	205-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	pyrene	204-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24	benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25	chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27	benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
28	benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30	dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	benzo[ghi]perylene	205-883-8	191-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33	tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34	benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35	toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36		202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37		205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	pH	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PH		6.62	рН		6.62	рН	6.62 pH		
	o-xylene: [1] p-xyle	ene; [2] m-xylene; [3										
39	601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
		215-535-7 [4]	1330-20-7 [4]						Total:	0.0572 %		

Page 20 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP05-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the citual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The DASSES the Inert (Inert waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.642	3	5
2	LOI (loss on ignition)	%	7.29	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	6.62	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.013	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	0.0362	0.5	10
13	copper	mg/kg	0.0057	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	25	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	33	500	800
26	TDS (total dissolved solids)	mg/kg	237	4,000	60,000

Key

User supplied data

Page 22 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Classification of sample: TP06-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

70/04/2024

Sample details

Sample name: LoW Code:

03)

Moisture content:

11%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
	0	confirm TPH has N	│ IOT arisen from die	1		-							
2						☑							
3	4	antimony { antimor		_		2.77	mg/kg	1.197	2.951	mg/kg	0.000295 %	✓	
			215-175-0	1309-64-4	-								
4	4	arsenic { arsenic po 033-004-00-6	entoxide } 215-116-9	1303-28-2		22.2	mg/kg	1.534	30.306	mg/kg	0.00303 %	✓	
5	4	barium { barium		1303-20-2		00.0		4 000	00.044		0.0000.0/		
5		,	244-214-4	21109-95-5	1	80.2	mg/kg	1.233	88.044	mg/kg	0.0088 %	✓	
6	-	cadmium { cadmiui		110101001		1.96	mg/kg	1.855	3.235	mg/kg	0.000324 %	√	
	-		233-331-6	10124-36-4	+							-	
7	_	copper { dicopper of 029-002-00-X	215-270-7	1317-39-1	-	60.3	mg/kg	1.126	60.423	mg/kg	0.00604 %	✓	
8	æ å	lead {			1	16.9	mg/kg		15.041	mg/kg	0.0015 %	√	
	+	082-001-00-6			\vdash								
9	4	mercury { mercury 080-010-00-X	231-299-8	7487-94-7	-	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	æ.	molybdenum { moly		}	t	5.37	mg/kg	1.5	7.17	mg/kg	0.000717 %	/	
	Ĭ	042-001-00-9	215-204-7	1313-27-5		0.01		1.0	7.17	mg/kg	0.00071770	٧	
11	æ 🌡	nickel { nickel sulfa 028-009-00-5	te } 232-104-9	7786-81-4		57	mg/kg	2.637	133.759	mg/kg	0.0134 %	✓	
\vdash		selenium { seleniur			+							\vdash	
12	≪\$	cadmium sulphose elsewhere in this A	lenide and those s			2.1	mg/kg	1.405	2.626	mg/kg	0.000263 %	✓	
	+	034-002-00-8											
13	-	zinc { zinc sulphate	-			70.7	mg/kg	2.469	155.376	mg/kg	0.0155 %	,	
13			231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		70.7	ilig/kg	2.408	100.076	ilig/kg	0.0100 /0	~	
14	*	chromium in chrom	e (worst case) }			23.4	mg/kg	1.462	30.438	mg/kg	0.00304 %	~	
			215-160-9	1308-38-9									

_	_				_								
#			eterminand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MCApplied	Conc. Not Used
	æ	number chromium in chromium ((VI) compound		ਹ							Σ	9_
15		oxide }	-607-8	1333-82-0		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
16		naphthalene				<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene		91-20-3		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene [205-	-917-1	208-96-8		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
	0	201- fluorene	-469-6	83-32-9									
19			-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0		-581-5	85-01-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene 204-	-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracene				<0.014	mg/kg		<0.014	mg/kg	<0.000014 %		<lod< td=""></lod<>
25		chrysene		56-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		601-048-00-0 205- benzo[b]fluoranthene	-923-4	218-01-9		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		601-034-00-4 205- benzo[k]fluoranthene	-911-9	205-99-2								+	
27		601-036-00-5 205-		207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.000014 %		<lod< td=""></lod<>
28		benzo[a]pyrene; benzo[601-032-00-3 200-		50-32-8		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyrene	-893-2	193-39-5		<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthracene	-181-8	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene				<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyls; PC		191-24-2		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		tert-butyl methyl ether;		1336-36-3									
33		2-methoxy-2-methylprop 603-181-00-X [216-	pane -653-1	1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene 601-020-00-8 200-	-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	-849-4	100-41-4		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
	0	205- pH	-881-7	191-07-1									
38		o-xylene; [1] p-xylene; [[2] m-vylene: [3	PH		8.03	pН		8.03	pН	8.03 pH	\perp	
39		601-022-00-9 202- 203- 203-	-422-2 [1] -396-5 [2] -576-3 [3] -535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
		F10								Total:	0.0541 %		

Page 24 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Key User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **₫** <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP06-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the citual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The DASSES the Inert (Inert waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.645	3	5
2	LOI (loss on ignition)	%	5.22	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.03	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0217	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	0.0247	0.5	10
13	copper	mg/kg	0.0115	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	0.102	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0347	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	7.22	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	757	4,000	60,000

Key

User supplied data

Page 26 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

Appendix A: Classifier defined and non EU CLP determinands

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Choolis 2;

H411

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350

(HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

EU CLP index number: 016-002-00-X

Description/Comments:

Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

1411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

 $\textbf{Hazard Statements:} \ \ \textbf{Acute Tox.} \ \ \textbf{4; H302} \ \ \textbf{, Eye Irrit.} \ \ \textbf{2; H319} \ \ \textbf{, STOT SE 3; H335} \ \ \textbf{, Carc.} \ \ \textbf{2; H351} \ \ \textbf{, Skin Sens.} \ \ \textbf{1; H317} \ \ \textbf{, Aquatic Acute 1; H400} \ \$

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12 . ,

Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 17 Jul 2015
Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H418

CAS Number: 206-44-0)

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma

Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC - Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

Page 28 of 29 VGH16-LCB4P-F3TGS www.hazwasteonline.com

barium {barium sulphide}

Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021

HazWasteOnline Classification Engine Version: 2023.221.5713.10531 (09 Aug 2023)

HazWasteOnline Database: 2023.221.5713.10531 (09 Aug 2023)

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

 $\textbf{7th ATP} \text{ -} \ \text{Regulation } 2015/1221/\text{EU of } 24 \ \text{July } 2015$

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

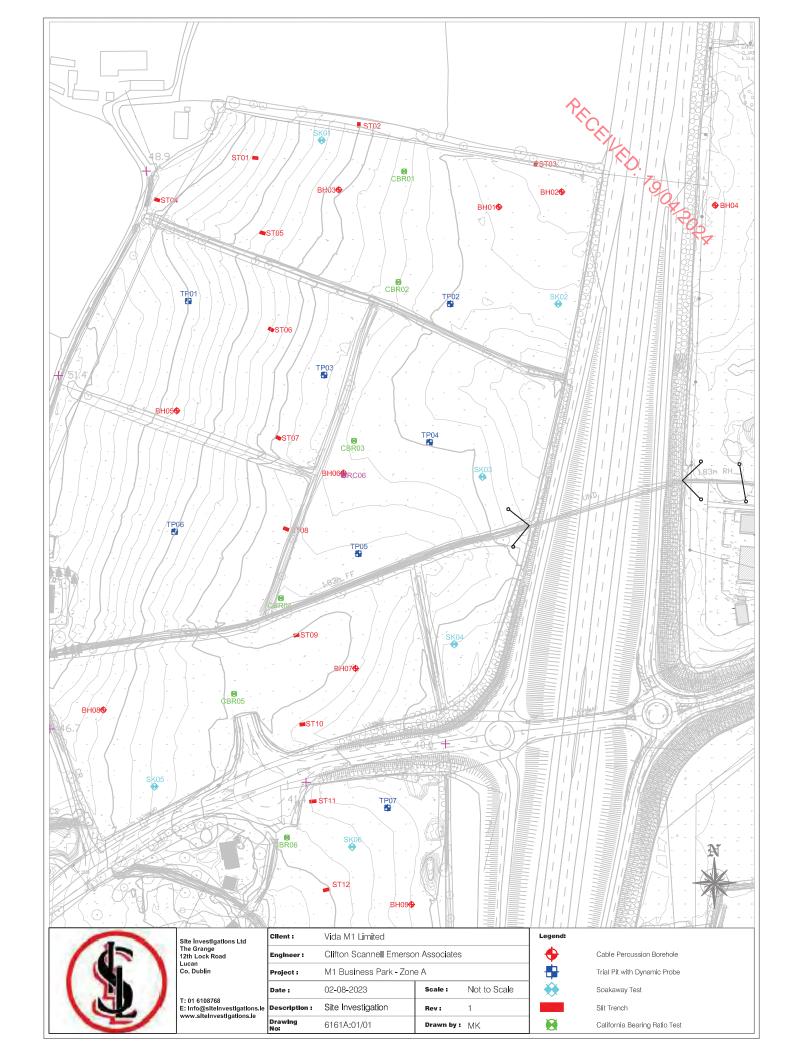
The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

PRICEINED. 7000 POR 2024

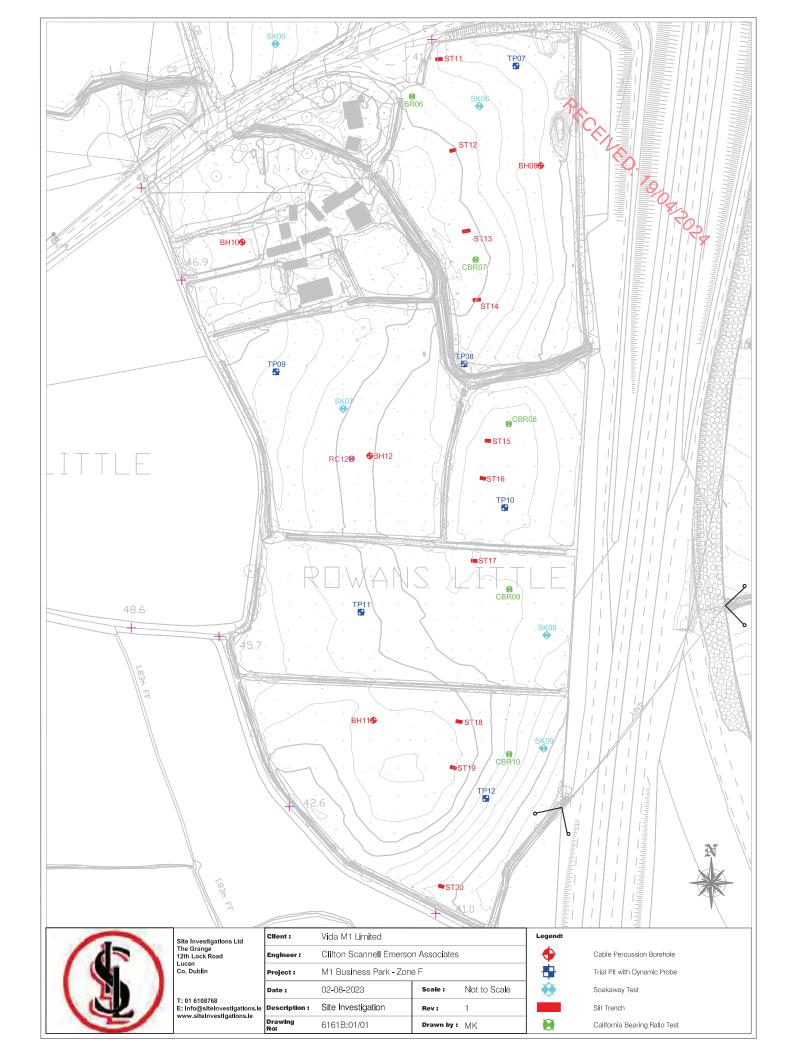

Appendix 10 Survey Data

Survey Data

Location	Irish Transverse Mercator		Floretion	Irish National Grid				
	Easting	Northing	Elevation	Easting	Northing			
Cable Percussive Boreholes								
BH01	718270.062	758944.563	39.27	318344.713	258923673			
BH02	718317.392	758955.904	38.61	318392.053	258935.016			
BH03	718149.632	758957.492	42.51	318224.257	258936.604			
BH04	718433.018	758945.877	38.01	318507.703	258924.988			
BH05	718027.659	758791.222	52.61	318102.260	258770.297			
BH06	718153.144	758744.248	47.46	318227.772	258723.314			
BH07	718162.225	758597.357	50.75	318236.857	258576.391			
BH08	717972.469	758566.068	51.77	318047.061	258545.094			
Rotary Corehole								
RC06	718153.353	758742.779	40.74	318227.981	258721.844			
Trial Pits								
TP01	718038.629	758873.192	54.17	318113.232	258852.285			
TP02	718233.569	758871.608	44.53	318308.213	258850.702			
TP03	718176.142	758807.603	45.92	318250.774	258786.683			
TP04	718217.971	758767.433	48.99	318292.613	258746.504			
TP05	718164.432	758683.626	46.89	318239.063	258662.679			
TP06	718026.098	758700.135	52.38	318100.700	258679.190			
Soakaway Tests								
SA01	718136.823	758994.754	53.70	318211.445	258973.874			
SA02	718314.851	758871.620	46.43	318389.512	258850.714			
SA03	718257.797	758741.568	47.57	318332.447	258720.634			
SA04	718236.532	758615.472	46.57	318311.179	258594.510			
SA05	718010.975	758508.398	49.93	318085.575	258487.412			
Slit Trenches								
ST01 - Start	718088.835	758981.316	46.01	318163.447	258960.432			
ST01 - Gas Main	718086.829	758981.560	44.31	318161.441	258960.677			
ST01 - End	718084.890	758981.646	46.42	318159.501	258960.763			
ST02 - Start	718164.797	759008.024	43.17	318239.425	258987.147			
ST02 - End	718164.677	759004.658	43.06	318239.305	258983.780			
ST03 - Start	718298.417	758978.657	45.94	318373.073	258957.774			
ST03 - End	718297.323	758975.252	45.99	318371.979	258954.368			
ST04 - Start	718011.089	758950.553	48.08	318085.685	258929.662			
ST04 - End	718014.727	758949.355	47.89	318089.324	258928.464			
ST05 - Start	718094.197	758924.514	44.02	318168.811	258903.618			
ST05 - Gas Main	718091.522	758925.381	42.20	318166.135	258904.485			
ST05 - End	718090.430	758925.575	44.34	318165.043	258904.679			
ST06 - Start	718100.475	758851.457	43.71	318175.091	258830.546			
ST06 - End	718096.870	758853.313	43.94	318171.485	258832.402			
ST07 - Start	718105.835	758769.948	42.05	318180.453	258749.019			

Survey Data

Location	Irish Transverse Mercator		Elevation	Irish National Grid			
	Easting	Northing	Elevation	Easting	Northing		
ST07 - End	718102.377	758771.783	42.27	318176.994	258750.854		
ST08 - Start	718111.848	758701.485	42.08	318186.468	258680 541		
ST08 - End	718108.136	758703.038	42.15	318182.755	258682.094		
ST09 - Start	718119.654	758622.515	42.52	318194.276	258601.554		
ST09 - End	718115.911	758622.019	42.34	318190.532	258601.058		
ST10 - Start	718124.208	758555.427	41.84	318198.832	258534.452		
ST10 - End	718120.513	758555.005	41.90	318195.136	258534.030		
California Bearing Ratio Tests							
CBR01	718198.884	758971.324	41.03	318273.519	258950.439		
CBR02	718194.493	758888.082	47.16	318269.128	258867.179		
CBR03	718161.079	758768.619	44.81	318235.709	258747.690		
CBR04	718106.095	758650.148	50.26	318180.714	258629.193		
CBR05	718070.858	758578.249	50.08	318145.470	258557.278		



Survey Data

Location	Irish Transve	erse Mercator	Elevation	Irish Nat	ional Grid
Location	Easting	Northing	Elevation	Easting	Northing
		Cable Percussive	e Boreholes		`O
BH09	718204.443	758419.673	40.45	318279.085	258398 669
BH10	717986.639	758363.763	54.45	318061.240	258342.750
BH11	718082.368	758014.931	53.56	318156.990	257993.840
BH12	718079.765	758207.885	54.53	318154.380	258186.830
		Rotary Cor	ehole		
RC12	718066.484	758205.759	42.84	318141.099	258184.708
		Trial Pi	ts		
TP07	718186.356	758492.339	40.62	318260.994	258471.350
TP08	718148.548	758274.928	41.78	318223.180	258253.892
TP09	718011.299	758269.178	44.30	318085.902	258248.140
TP10	718178.184	758170.122	42.33	318252.823	258149.064
TP11	718073.335	758093.866	43.06	318147.953	258072.791
TP12	718164.353	757957.944	41.79	318238.992	257936.840
		Soakaway	Tests		
SA06	718159.686	758463.043	41.70	318234.318	258442.048
SA07	718060.438	758242.218	43.09	318135.052	258221.175
SA08	718208.759	758077.096	41.68	318283.406	258056.018
SA09	718206.587	757994.430	40.28	318281.234	257973.334
		Slit Trend	hes		
ST11 - Start	718127.864	758496.993	41.51	318202.489	258476.005
ST11 - Gas Main	718130.063	758497.593	39.37	318204.689	258476.605
ST11 - End	718132.620	758497.497	41.18	318207.246	258476.509
ST12 - Start	718142.727	758431.240	42.49	318217.356	258410.238
ST12 - Gas Main	718141.190	758430.939	40.79	318215.819	258409.937
ST12 - End	718138.157	758430.150	42.69	318212.785	258409.148
ST13 - Start	718152.801	758372.316	42.77	318227.433	258351.301
ST13 - Gas Main	718150.722	758372.028	41.03	318225.353	258351.013
ST13 - End	718147.420	758371.438	42.82	318222.051	258350.423
ST14 - Start	718160.474	758322.024	42.50	318235.108	258300.999
ST14 - Gas Main	718158.762	758321.775	40.85	318233.396	258300.749
ST14 - End	718155.150	758321.344	42.55	318229.783	258300.318
ST15 - Start	718167.773	758218.735	42.31	318242.410	258197.687
ST15 - Gas Main	718165.400	758218.439	39.87	318240.036	258197.391
ST15 - End	718163.951	758218.935	42.32	318238.587	258197.887
ST16 - Start	718164.197	758191.024	42.35	318238.830	258169.970
ST16 - End	718160.311	758191.797	42.31	318234.950	258170.740
ST17 - Start	718157.987	758131.140	42.03	318232.620	258110.070
ST17 - End	718153.864	758131.430	42.16	318228.500	258110.360
ST18 - Start	718149.747	758051.479	42.76	318224.380	258030.400

Survey Data

		<u>Jai voy</u>		PA		
Location	Irish Transve	erse Mercator	Elevation	Irish National Grid		
Location	Easting	Northing	Elevation	Easting	Northing	
ST18 - Gas Main	718144.825	758013.786	41.54	318219.459	257992.694	
ST18 - End	718146.076	758051.747	42.63	318220.710	258030 660	
ST19 - Start	718142.780	757979.761	43.55	318217.410	257958.660	
ST19 - Gas Main	718141.523	757980.166	42.08	318216.160	257959.070	
ST19 - End	718138.628	757981.018	43.78	318213.260	257959.920	
ST20 - Start	718133.772	757893.297	40.48	318208.410	257872.180	
ST20 - End	718130.018	757894.407	40.60	318204.650	257873.290	
		California Bearing	g Ratio Tests			
CBR06	718110.662	758470.028	42.12	318185.284	258449.034	
CBR07	718156.992	758351.039	42.81	318231.625	258330.020	
CBR08	718181.153	758231.273	42.19	318255.792	258210.228	
CBR09	718181.599	758110.611	42.01	318256.240	258089.540	
CBR10	718181.435	757990.200	41.70	318256.077	257969.103	

Appendix 8: Water, Hydrology & Hydrogeology

Flood Risk Assessment M1 Business Park - Zones A & F

M02103-02_DG08 | March 2024

PRICEINED. 70/04/2024

DOCUMENT CONTROL

DOCUMENT FILENAME	M02103-02_DG08 M1 Business Park - Zones A&F FRA Rev 2.docx
DOCUMENT REFERENCE	M02103-02_DG08
TITLE	Flood Risk Assessment
CLIENT	Clifton Scannell Emerson Associates
PROJECT MANAGER	Paul Singleton
AUTHOR(S)	Andrew Snowling, Duncan Hartwick
BRANCH	DUBLIN Unit 12, The BEaT Centre, Stephenstown Industrial Estate, Balbriggan T: +353 (0)1 5138963 W: www.mccloyconsulting.ie

REVISION HISTORY

Rev. Ref.	Date	Prep	Chk	Арр	Amendments	Reason for Issue
1	15/03/2024	AS	DH	PS	ORIGINAL	DRAFT FOR REVIEW
2	20/03/2024	AS	DH	PS	MINOR AMENDMENTS / SITE BOUNDARY UPDATED	ISSUED FOR INFORMATION

DISTRIBUTION

Resiminat	Revision					
Recipient	1	2	3	4	5	6
FILE	✓	✓				
CLIENT	✓	✓				

DISCLAIMER

This document has been prepared solely as a Flood Risk Assessment for Clifton Scannell Emerson Associates at the instruction of the party named in this document control sheet. McCloy Consulting Ltd accepts no responsibility or liability for any use that is made of this document other than for the purposes for which it was originally commissioned and prepared, including by any third party.

The contents and format of this report are subject to copyright owned by McCloy Consulting Ltd save to the extent that copyright has been legally assigned by us to another party or is used by McCloy Consulting Ltd under licence. McCloy Consulting Ltd own the copyright in this report and it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.

SUSTAINABILITY

As an environmental consultancy, McCloy Consulting Ltd takes its responsibility seriously to try to operate in a sustainable way. As part of this, we try to maintain a paperless office and will only provide printed copies of reports and drawings where specifically requested to do so. We encourage end users of this document to think twice before printing a hard copy – please consider whether a digital copy would suffice. If printing is unavoidable, please consider double sided printing. This report (excluding appendices) contains 27 pages of text, which is equivalent to a carbon footprint of approximately 113.4 g CO₂ when printed single-sided.

MAPPING DISCLAIMER

Maps and figures in this report include OpenStreetMap background mapping licensed under the Open Data Commons Open Database Licence (ODbL) by the OpenStreetMap Foundation (OSMF). © OpenStreetMap contributors.

CONTENTS

		· C.
1		1
	1.1 Terms of Reference	1
	1.2 Statement of Authority	1
	1.3 Purpose	1
	1.4 APPROACH TO THE ASSESSMENT	1
	1.4.1 Hydraulic Model Status	
	1.4.2 PLANNING GUIDELINES	
2	DEVELOPMENT AND SITE DETAILS	
_	2.1 SITE LOCATION	
	2.2 Existing Site Description	
	2.3 AFFECTING WATERBODIES	
	2.4 GEOLOGY AND HYDROGEOLOGY	
	2.5 Proposals for the Site	
	2.6 VULNERABILITY CLASSIFICATION	
_		
3		
	3.1 FINGAL COUNTY COUNCIL	6
	3.1.1 FINGAL COUNTY DEVELOPMENT PLAN 2023-2029	
	3.1.2 SFRA FOR FINGAL DEVELOPMENT PLAN 2023-2029	
	3.2 OFFICE OF PUBLIC WORKS	
	3.2.1 OPW 'PAST FLOOD EVENTS'	<u>/</u>
	3.2.2 PRELIMINARY FLOOD RISK ASSESSMENT	
	3.2.3 FEM FRAMS	
	3.3 INTERNET / MEDIA / BACKGROUND SEARCH	
4	ASSESSMENT OF FLOOD MECHANISMS	10
	4.1 Preamble	10
	4.2 INITIAL ASSESSMENT	
	4.3 EXISTING (PRE-DEVELOPMENT) FLUVIAL FLOODING	11
	4.3.1 Preamble	
	4.3.2 Existing Scenario – Flood Zoning	
	4.4 PROPOSED SCENARIO (POST-DEVELOPMENT) FLUVIAL FLOODING	
	4.4.1 Preamble	12
	4.4.2 EFFECT OF THE DEVELOPMENT	
	4.4.3 PROPOSED FLOOD RISK – EFFECT OF CLIMATE CHANGE	
	4.5 Surface Water Flooding	
	4.5.1 Pluvial Runoff onto Site	
	4.5.2 Pluvial Runoff from Site	
5	SUMMARY OF FINDINGS AND RECOMMENDATIONS	16
	5.1 Summary of Findings	16
	5.2 Design Considerations	
	5.2.1 LAND USE	
	5.2.2 DESIGN LEVELS	
	5.2.3 Access Levels	
	5.2.4 Drainage Design	
	5.2.5 PROPOSED WATERCOURSE CROSSING	
	5.2.6 FUTURE DEVELOPMENT	
	5.3 MAINTENANCE REQUIREMENTS	
	5.3.1 WATERCOURSE MAINTENANCE	
	5.3.2 Drainage System Maintenance	
	5.4 SUMMARY OF FLOOD RISK AND MITIGATION	

LIST OF TABLES

Table 2.1: Vulnerability Classification	`C _{\(\)}	5
Table 4.1: Possible Flooding Mechanisms		
Table 4.2: Modelled Flood Levels - Existing Scenario Present Day	<u>````</u>	12
TABLE 4.3: MODELLED FLOOD LEVELS - PROPOSED SCENARIO PRESENT DAY		
TABLE 4.4: MODELLED FLOOD LEVELS - PROPOSED SCENARIO CLIMATE CHANGE		14
Table 5.1: Summary of Risks and Mitigation	Q	7 18
		700
		7

LIST OF FIGURES

Figure 2.1: Site Location.	3
FIGURE 2.2: SITE BOUNDARY AND AFFECTING WATERCOURSES	
FIGURE 3.1: FINGAL CC SFRA FLOOD ZONE MAPPING	
FIGURE 3.2: OPW PFRA INDICATIVE FLOOD MAPPING	
FIGURE 3.3: OPW FEM FRAMS FLOOD MAPPING	
FIGURE 4.1: FLOOD ZONE MAP – EXISTING SCENARIO PRESENT DAY	11
FIGURE 4.2: FLOOD EXTENTS MAP -PROPOSED SCENARIO PRESENT DAY	13
FIGURE 4.3: FLOOD EXTENTS MAP - PROPOSED SCENARIO CLIMATE CHANGE	

APPENDICES

APPENDIX A SITE DRAWINGS
APPENDIX B OPW / FINGAL CC FLOOD MAPS
APPENDIX C SITE-SPECIFIC FLOOD MAPPING

1 INTRODUCTION

1.1 Terms of Reference

This Flood Risk Assessment report was commissioned by Clifton Scannell Emerson Associates on behalf of Vida M1 Limited (the applicant) to support a planning application for the M1 Business Park - Zones A & F. The proposed development site / Zones A & F as shown on drawings accompanying the application is hereafter referred to as 'the site'.

1.2 Statement of Authority

This report and assessment has been prepared and reviewed by qualified professionals with appropriate experience in the fields of flood risk, drainage, wastewater, and hydraulic modelling studies. The key staff members involved in this project are as follows:

- Andrew Snowling Environmental Technician with experience in flood risk assessments, contaminated land risk assessments and surface water environments.
- Paul Singleton BEng (Hons) MSc CEng MIEI Chartered Civil / Environmental Engineer with particular experience in drainage, SuDS and flood risk assessment, and a recognised industry professional having given industry training in these fields in Ireland and the UK.

1.3 Purpose

This report is intended to present a detailed site-specific FRA (SSFRA) to ensure all relevant issues related to flooding are addressed. This 'Stage 3' FRA will assess the adequacy of existing information and present analysis undertaken to supplement existing data.

The assessment will therefore determine potential sources of flooding at the site. This report will also determine flood zones relevant to planning policy guidelines specific to flood risk management planning and will provide a basis for appropriate design and mitigation measures to be considered as part of the proposed development.

1.4 Approach to the Assessment

Consideration has been given to the sources and extent of fluvial flooding at the site, as well as flooding to the site from pluvial sources, overland flow and ponding of localised rainfall within the site. A walk over survey of the site was conducted by McCloy Consulting Ltd to investigate all sources of potential flooding. During the visit a photograph survey of the site and adjacent lands was undertaken. A topographical survey of the site was also commissioned and undertaken by a third party.

The method of assessment complies with the Source-Pathway-Receptor model, allowing spatial assessment of flood risk to people, properties and the environment at the site. The assessment will investigate the existing runoff characteristics and the potential impact the proposed development will have on pluvial (surface water) runoff.

1.4.1 Hydraulic Model Status

For the purposes of this assessment, the primary stakeholders are the Office of Public Works (OPW) and Fingal County Council (FCC). OPW and FCC data is used to form the basis of this assessment and is presented in line with the relevant guidance and requirements.

The area of interest and surrounding environs are included within the OPW / FCC Fingal East Meath Flood Risk Assessment and Management Study (FEM FRAMS), and maps of fluvial flooding produced as part of the study are included in and considered by this assessment.

The FEM FRAMS model and associated maps were published in 2009. Flood models supporting FEM FRAMS are not known to be permitted to be made available to 3rd parties under licence or otherwise. Given the significant period of time since the FEM FRAMS was produced and published, there is potential for watercourse morphology to have varied and other changes to have taken place that would cause variation to FEM FRAMS results.

In addition, FEM FRAMS Flood Maps 'map disclaimer' states that "the maps have been produced at a strategic, catchment level using an automated mapping process and...the maps should not be used to assess the flood risk associated with point locations or to replace detailed local flood risk assessment".

Therefore, the watercourses affecting the area of interest have been re-modelled based on best available data and techniques to establish a revised flood baseline, intended to supersede FEM FRAMS mapping as a basis for local development planning subject to Fingal County Council (as local planning authority) agreement.

A report has been prepared to outline the inputs and results of the hydraulic modelling process; refer to the Flood Study (ref. M02103-02_DG01) submitted under separate cover. The Flood Study for lands at the M1 Business Park was originally undertaken by McCloy Consulting in 2018 (hereafter 'McCloy Flood Study'). The hydrological assessment and hydraulic model were reviewed as part of a Fingal CC Local Area Plan (LAP) for lands at 'Rowans Little' which included production of a Strategic Flood Risk Assessment (SFRA) in late 2022. Further site walkover and survey data was considered as part of this assessment in January 2024.

Subsequent work in 2022 and 2024 has shown that the 2018 Flood Study is still relevant / correctly represents flood extents and levels at the site. Therefore, hydrological estimates and hydraulic model results from the Flood Study and subsequent model update are deemed fit for the purpose of this SSFRA.

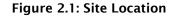
1.4.2 <u>Planning Guidelines</u>

The requirements for FRAs are generally as set out in the OPW's 'The Planning System and Flood Risk Management – Guidelines for Planning Authorities, Technical Appendix A' published by the OPW and Department of the Environment, Heritage and Local Government in November 2009 (hereafter referred to as the 'OPW Guidelines'). The OPW Guidelines are supplemented by 'Departmental Circular PL 2/2014', issued by the Department of Environment, Community and Local Government on 13th August 2014, which relates to the use of OPW flood mapping in assessing planning applications and provides clarifications of advice contained within the OPW Guidelines. Further guidance is also provided in the CIRIA Research Project 624 'Development and Flood Risk: Guidance for the Construction Industry'.

Planning Guidelines applicable to the area of interest are implemented in the Fingal Development Plan 2023-2029, and specifically through the Strategic Flood Risk Assessment (SFRA) for the Fingal Development Plan 2023-2029.

The Fingal SFRA was prepared in accordance with the requirements of the OPW Guidelines and adopts the same Flood Zone standard as the national planning guidelines. Flood Zones are defined by the predicted extents of a design flood event that determine the suitability of development from a flood risk point of view. They are defined in both the OPW Planning Guidelines and SFRA as follows:

- Flood Zone A where the probability of flooding from rivers and the sea is highest (greater than 1% or 1 in 100 in any given year for river flooding or 0.5% or 1 in 200 in any given year for coastal flooding).
- Flood Zone B where the probability of flooding from rivers and the sea is moderate (between 0.1% or 1 in 1000 in any given year and 1% or 1 in 100 in any given year for river flooding and between 0.1% or 1 in 1000 in any given year and 0.5% or 1 in 200 in any given year for coastal flooding).
- Flood Zone C where the probability of flooding from rivers and the sea is low (less than 0.1% or 1 in 1000 in any given year for both river and coastal flooding).


The OPW Guidelines and Fingal SFRA specify that Flood Zones are to be used to determine the suitability of proposed developments and are to be derived from 'present day' hydrological estimates (i.e., without inclusion of climate change allowances), and without taking account of flood defences.

The OPW Guidelines also specify that proposed developments should be designed to be resilient to the effects of climate change.

2 **DEVELOPMENT AND SITE DETAILS**

2.1 **Site Location**

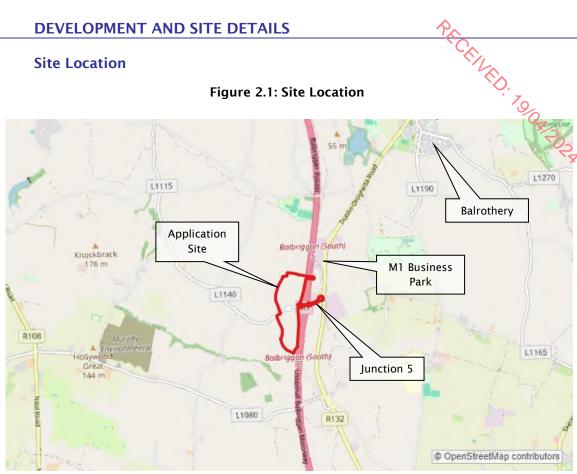
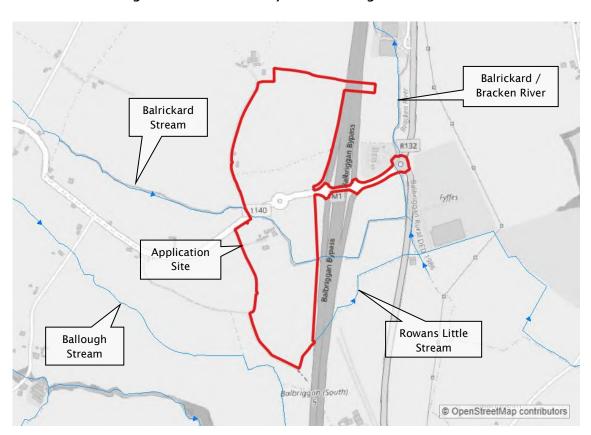



Figure 2.2: Site Boundary and Affecting Watercourses

2.2 Existing Site Description

The site is located in the townlands of Rowans Big (Zone A) and Rowans Little (Zone F), approximately 5.3 km north-west of Lusk and 5.8 km south-west of Balbriggan, as shown in Figure 2.4. The M1 motorway runs adjacent to the eastern boundary and the site includes part of Junction 5 (Balbriggan). The L1140 local road (with a roundabout) runs through the centre of the Plan Area in an east-west direction and connects to the R132 regional road to the east of the M1 via a bridge.

The site currently primarily comprises agricultural land. There is one residential dwelling on the north side of the L1140 (Zone A) and three residential dwellings with adjacent agricultural buildings on the south side of the local road (Zone F), as shown in Figure 2.2.

2.3 Affecting Waterbodies

Figure 2.2 includes watercourses within and in the vicinity of the site shown on EPA and OPW watercourse datasets. The site is intersected by the Balrickard Stream, and the Rowans Little Stream flows adjacent to the southernmost boundary. Both watercourses are culverted beneath the M1 and flow into the Balrickard / Bracken River.

In addition to the EPA / OPW watercourses, a number of open field drains run through the site following the general fall of local topography from west to east.

2.4 Geology and Hydrogeology

Geological Survey of Ireland (GSI) data indicates the following in relation to the geology and hydrogeology of the site:

- Subsoil geology comprises primarily till derived from Namurian sandstones and shales in the western
 extent of the Plan Area and Irish Sea till derived from Lower Palaeozoic sandstones and shales in the
 eastern extent.
- The subsoil underlying the Plan Area has low permeability and low recharge capacity.
- Bedrock geology primarily comprises the Loughshinny Formation (limestone and shale) with Balrickard Formation (coarse sandstone and shale) with the Walshestown Formation (shale, sandstone, and limestone) in the north-west extent.
- There are no bedrock outcrops within the Plan Area.
- The Plan Area is within the Hynestown groundwater body (classified as bedrock with a poorly productive flow regime).
- The Plan Area is primarily underlain by a locally important aquifer (i.e., bedrock that is generally moderately productive) with a poor aquifer (i.e., bedrock that is generally unproductive except for local zones) in the north-west extent.
- Geotechnical boreholes drilled in the southern extent of the Plan Area and in the centre of the Plan Area at the L1140 roundabout (as well as along the M1 adjacent to the eastern Plan Area boundary) found that neither bedrock nor groundwater were met at depths up to 20 m.

As part of Site Investigation (SI) for the site, geotechnical boreholes drilled in August 2023 provided the following data:

- Zone A: No bedrock found within 15m, water-strike along eastern boundary (low-lying) 0.7-1.5m, water-strike along western boundary (high-lying) 6m.
- Zone F: No bedrock found within 15m, water-strike 3.5m depth recorded in BH located near Balrickard Stream and Rowans Little Stream.

2.5 Proposals for the Site

The proposed development described in the planning application that this FRA is intended to support is as follows:

Permission for a 10-year duration is sought under the Planning and Development Act, 2000 (as amended), by Vida M1 Limited for a Business Park Development which comprises of the demolition of all existing buildings on site, provision of internal roads and services infrastructure (surface water, foul and water supply) to facilitate the future development of the lands including public lighting, utility connections (power and telecommunications) and Sustainable Drainage Systems (SuDS). Provision of new access roads from 'Bhailsigh Road' (L1140) to Zone A and Zone F and new shared cycle and pedestrian routes over the M1 motorway via the (L1140) towards the R132. Upgrades and modifications to the existing roundabout along the L1140. All ancillary landscaping, road works, boundary treatments and site development works to support the development. All future developments will be subject to their own respective planning application approvals.

A drawing showing the current proposals is provided in Appendix A of this report.

2.6 Vulnerability Classification

The vulnerability classification(s) of the proposed development are shown in Table 2.1, based on the classification criteria set out in the OPW Guidelines.

Table 2.1: Vulnerability Classification

Part	Use	Classification	
Access Roads	Local Transport Infrastructure	Less Vulnerable	
Green Areas	Open Amenity	Water Compatible	

3 BACKGROUND INFORMATION REVIEW

As part of the data collection phase for this assessment, several available sources of information generally as set out in the OPW Guidelines were investigated in order to build an understanding of the potential risk of flooding to the site.

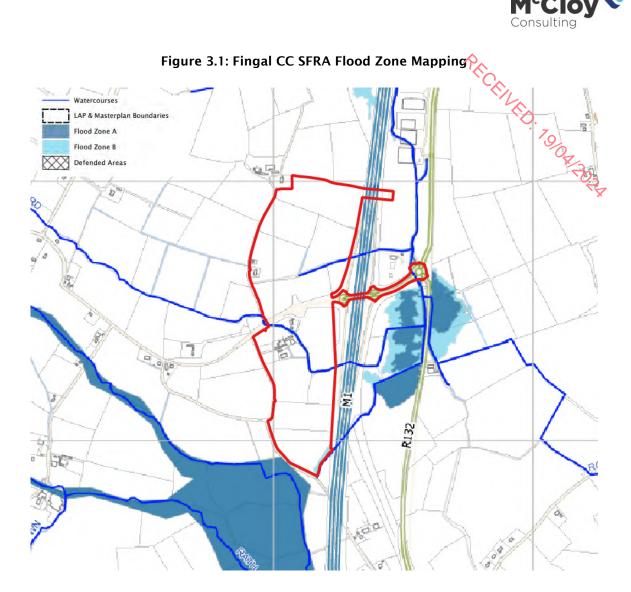
The following review highlights the key findings of the background information review.

3.1 Fingal County Council

3.1.1 Fingal County Development Plan 2023-2029

The Fingal County Development Plan 2023 - 2029 has been reviewed as part of this assessment with the following policies and objectives being the most relevant to this flood risk assessment:

- CAP11: Development proposals should demonstrate sustainable design principles for new buildings/services/site. The Council will promote and support development which is resilient to climate change. This would include "D: Reducing flood risk, damage to property from extreme events- residential, public and commercial".
- CAP29: Encourage the use of natural flood risk mitigation or nature-based solutions including integrated wetlands, green infrastructure, and Sustainable Drainage Systems (SuDS) as part of wider adaptation and mitigation responses to achieve flood resilience.
- IUO16: Have regard to the OPW Flood Risk Management Guidelines (2009), as revised by Circular PL 2/2014, when assessing planning applications and in the preparation of statutory and non-statutory plans and to require site specific flood risk assessments are to be considered for all new developments within the County. All development must prepare a Stage 1 Flood Risk Analysis and if the flooding risk is not screened out, they must prepare a Site Specific Flood Risk Assessment (SSFRA) for the development, where appropriate.
- IUO18: All Flood Risk Assessments must comply with the recommendations from the SFRA report.


3.1.2 SFRA for Fingal Development Plan 2023-2029

The Fingal Development Plan SFRA 2023-2029 includes the following guidance which is considered pertinent to the FRA:

- Flood Zones represent flood extents for the existing, undefended present-day scenario.
- Climate change projections are to be applied depending on the receptor vulnerability; HEFS is to be considered for 'highly vulnerable' development and MRFS is to be considered for 'less vulnerable' development.
- A key mechanism for providing flood protection and resilience is the setting of Finished Floor Levels (FFLs), Finished Ground Levels (FGLs).
- Minimum fluvial flooding design levels for 'less vulnerable' development is the greater of the 1% AEP (present day / Flood Zone A) flood level + 500mm freeboard; or 1% AEP MRFS CC flood level + 250mm freeboard.
- In accordance with the OPW Guidelines, access to and egress from any development should be within Flood Zone C (i.e., outside the 0.1% AEP fluvial / coastal floodplain). Where this is not achievable due to on-site or off-site flood risk, a Flood Management Plan for the development will be required.

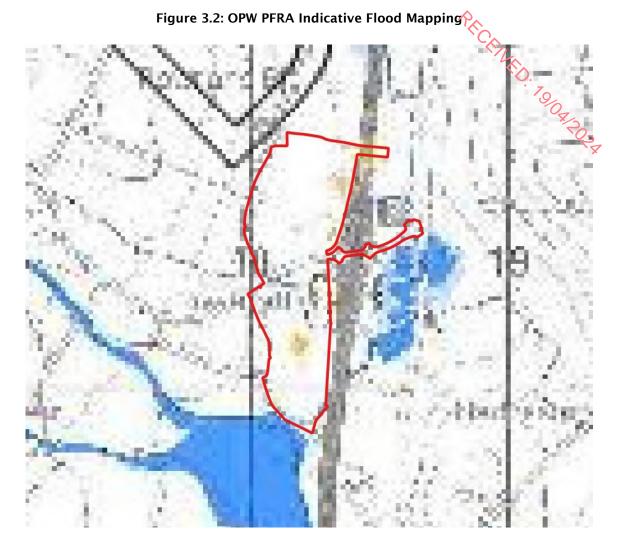
An extract from the Flood Zone mapping published as part of the Fingal SFRA is included in Figure 3.1. The relevant full flood map is included in Appendix B.

3.2 Office of Public Works

3.2.1 **OPW 'Past Flood Events'**

OPW 'Past Flood Event' mapping (available through floodinfo.ie) shows a record of historic flooding in the vicinity of the site, on the east side of the M1 motorway, dated 31st March 2008. Photographs included within the accompanying flood report show flooding of agricultural land north of the existing M1 Business Park and shallow flooding within the M1 Business Park.

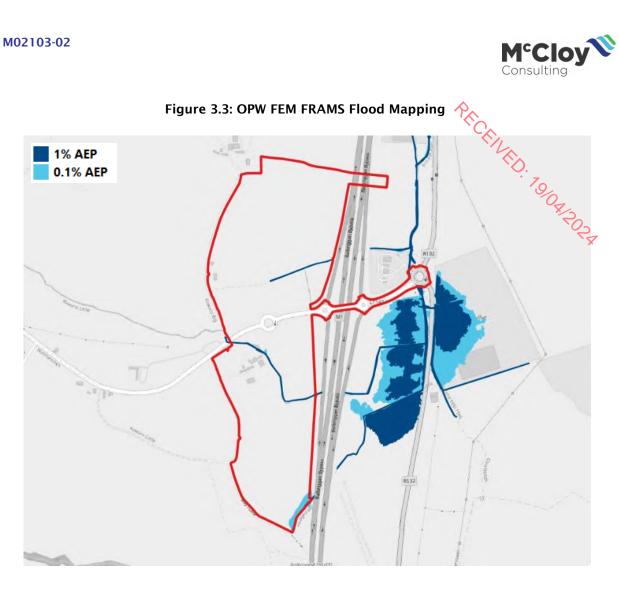
No evidence of historic flooding on the west side of the M1, affecting the site and surrounds, were found.


3.2.2 Preliminary Flood Risk Assessment

The first stage of the OPW's Catchment Flood Risk Assessment and Management (CFRAM) Programme comprised the national Preliminary Flood Risk Assessment (PFRA), which included flood mapping for the entire country based on available or readily derivable information. The purpose of the PFRA was to identify areas that may be susceptible to flooding to inform further CFRAM stages. PFRA flood mapping is considered indicative only and is therefore unsuitable for site-specific assessment.

The PFRA flood map indicates that a minor section of the site may be at risk of pluvial (surface water) flooding but no fluvial or groundwater flooding is shown. An extract of the original PFRA flood map is presented in Figure 3.2 and the full map is included in Appendix B.

While recent correspondence from the OPW has informed that the PFRA mapping is considered 'superseded', the PFRA is the best available pluvial flood data source for the site.


3.2.3 FEM FRAMS

As a part of the CFRAM programme, the OPW commissioned a number of pilot studies. One such pilot study was the Fingal East Meath Flood Risk Assessment and Management Study (FEM FRAMS), undertaken in partnership with Fingal County Council and Meath County Council. The study was carried out to investigate flood risk in the Fingal East Meath area.

The FEM FRAMS flood study involved the production of flood maps for each study pilot area. One such study area was the Bracken River and the associated flood maps were used to inform the initial stages of the McCloy Flood Study. It is noted that the site is shown to not be affected by out-of-bank flooding by the FEM FRAMS flood maps, with the exception of a minor section of the south of the site, but that there is 'low confidence' (> 40 m) in modelled flood extents in the vicinity.

The FEM FRAMS flood extents are presented in Figure 3.3 and the full original map is included in Appendix B. As shown, the site is not predicted to be affected by flooding.

Internet / Media / Background Search 3.3

A media search highlighted news articles with evidence of flooding at the M1 off-slip at Junction 5 was found on 12th December 2015 when fire crews had to rescue a trapped car^{1,2}.

 $[\]frac{1}{\text{https://www.independent.ie/irish-news/storms/complete-mayhem-for-residents-as-river-breaks-bank-flooding-homes-with-water-}{\underline{34280989.html}} \ [\text{accessed } 12/02/2024]$

https://www.thesun.ie/archives/irish-news/115587/motorists-stranded-as-m1-motorway-slip-roads-flood/ [accessed 12/02/2024]

4 ASSESSMENT OF FLOOD MECHANISMS

4.1 Preamble

Development control procedures advise against inappropriate development in areas at risk of flooding and aim to avoid new development that increases flood risk elsewhere, in accordance with the OPW Guidelines.

The following assessment determines the flood hazards to life and property at the site to subsequently assess the site and proposed development based on the Flood Risk Framework outlined in the OPW Guidelines. Mitigation of flood hazards, where required, is detailed in Section 0.

4.2 Initial Assessment

The following is a record of the screening assessment of the development site for potential flooding mechanisms requiring subsequent detailed assessment, based on the information obtained from the background information review and consultations.

Table 4.1: Possible Flooding Mechanisms

Source/Pathway	Significant?	Reason
Fluvial Flooding	Yes	Watercourses are shown to flow through and in the vicinity of the site.
Coastal Flooding	No	OPW flood mapping indicates that tidal / coastal flooding does not affect the site. Predicted tidally influenced flooding at Balbriggan is not predicted to extend to subject site.
Urban Drainage	No	No indication of urban drainage flooding / sewer incapacity found in an initial evidence search and limited development exists in the vicinity of the site.
Surface Water Flooding	Possible	OPW PFRA flood mapping indicates that the site is potentially affected by surface water flooding and elevated areas do exist in the vicinity of the site.
Surface Water Discharge	Possible	Any development has the potential to increase the impermeable area at a site causing an increase in the rate and volume of surface water runoff from the site.
Groundwater	No	Underlying geology is till over shale and is not of a nature that would be susceptible to superficial deposit flooding. Site topography and bedrock geology are not of a nature that would be prone to clearwater groundwater flooding or impoundment of emergent groundwater.
Reservoirs/Canals/ Artificial Sources	No	A screening assessment based on OSI mapping indicates that there are no impoundments or reservoirs in close proximity to the site or that drain towards the site.

Flooding mechanisms screened as being potentially significant and requiring further assessment have been assessed further in the following sections.

4.3 Existing (Pre-Development) Fluvial Flooding

4.3.1 Preamble

As described in Section 1.4.1, the site-specific 'McCloy Flood Study' has been prepared to provide a more accurate and recent representation of flooding in the area. Refer to Flood Study M02103-02_DG01 submitted under separate cover for further information on flood modelling and hydrology methodologies. The McCloy Flood Study provides the baseline upon which this site-specific FRA is based.

4.3.2 Existing Scenario - Flood Zoning

An extract from the existing scenario, present day Flood Zone Map is shown in Figure 4.1 and demonstrates that, similar to the OPW FEM FRAMS, limited out of bank flooding occurs within the boundary. The only area of surface ponding of fluvial floodwater is adjacent to the M1 in the north east of the site at the downstream end of a local field drain. It is noted that a number of field drains are shown 'blue' (i.e. affected by flooding) despite not being classed as watercourses, including in the northern section of the site, and that flood extents are trimmed to the site boundary.

Flood levels at key locations are shown in Table 4.2. The full Flood Zone Map for the site is included in Appendix C.

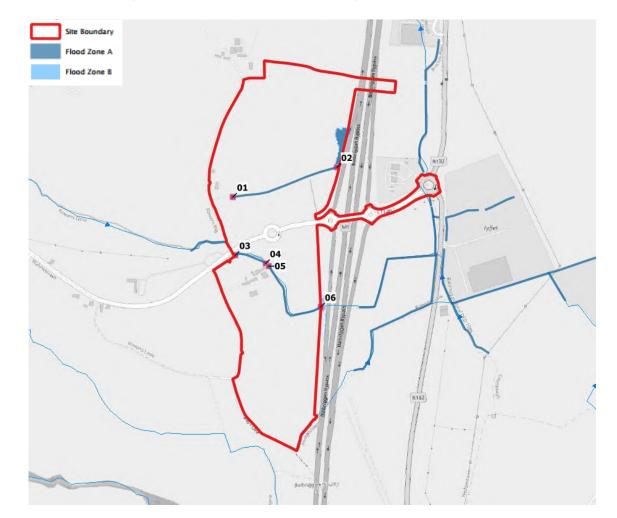


Figure 4.1: Flood Zone Map - Existing Scenario Present Day

Table 4.2: Modelled Flood Levels - Existing Scenario Present Day

Model Node Reference	Location	Flood Zone A Level (mOD)	Flood Zone B Level (mOD)
01	Upstream extent of Land Drain in the north of the Site	42.16	42.25
02	Downstream extent of Land Drain in the north of the Site	38.64	38.69
03	Upstream extent of Balrickard Stream in the west of the Site	43.06	43.16
04	Upstream of existing crossing in the centre of the Site	42.14	42.46
05	Downstream of existing crossing in the centre of the Site	40.76	40.85
06	Downstream extent of Balrickard Stream in the east of the Site	38.53	39.28

4.4 Proposed Scenario (Post-Development) Fluvial Flooding

4.4.1 Preamble

Proposals for the site have been developed on the basis of the Flood Zone Map for the site in accordance with the OPW Guidelines and Fingal CC SFRA.

4.4.2 Effect of the Development

All proposed 'less vulnerable' development has been sited in Flood Zone C with the exception of part of the access track in the centre of the site where it crosses the Balrickard Stream. The watercourse crossing has been designed in line with OPW Section 50 requirements.

Therefore, there is no change to the existing scenario flood extents as shown in Figure 4.2. As such, the proposals have no impact on flood risk within the site or elsewhere in keeping with the requirements of the OPW Guidelines, as demonstrated by the proposed scenario flood levels in Table 4.3. The full proposed scenario flood extents map is included in Appendix C.

Table 4.3: Modelled Flood Levels - Proposed Scenario Present Day

Model Node Reference	Location	Flood Zone A Level (mOD)	Flood Zone B Level (mOD)
01	Upstream extent of Land Drain in the north of the Site	42.16	42.25
02	Downstream extent of Land Drain in the north of the Site	38.64	38.69
03	Upstream extent of Balrickard Stream in the west of the Site	43.06	43.16
04	Upstream of existing crossing in the centre of the Site	42.14	42.46
05	Downstream of existing crossing in the centre of the Site	40.76	40.85
06	Downstream extent of Balrickard Stream in the east of the Site	38.53	39.28

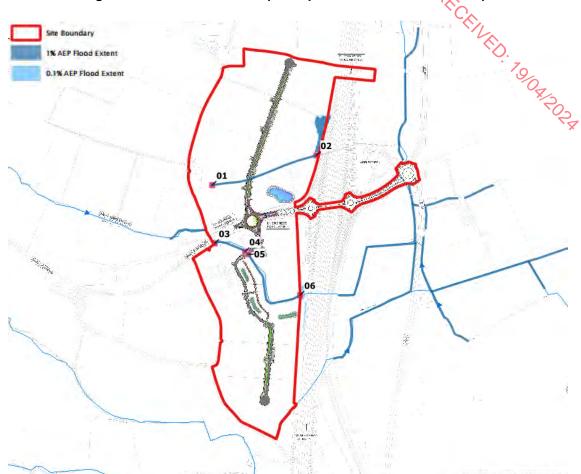


Figure 4.2: Flood Extents Map -Proposed Scenario Present Day

4.4.3 Proposed Flood Risk - Effect of Climate Change

The OPW Guidelines and Fingal SFRA require site-specific FRAs to consider increased flood risk to the proposed development under climate change (CC) scenarios. OPW guidance suggests using a Mid-Range Future Scenario, which represents a 20% increase in flood flows and / or 0.5 m increase in mean sea level, where applicable. An estimation of the effect of climate change on flooding at the site has been derived from the detailed site-specific hydraulic model by adding 20% to the present day design flows.

Table 4.4 shows the predicted post-development climate change flood levels at the site. Allowance for climate change causes a maximum increase in flood level of 0.66 m directly upstream of the M1 culvert at the south east of the site (due to capacity issues with the larger flow) and a maximum of 0.14 m at all other points.

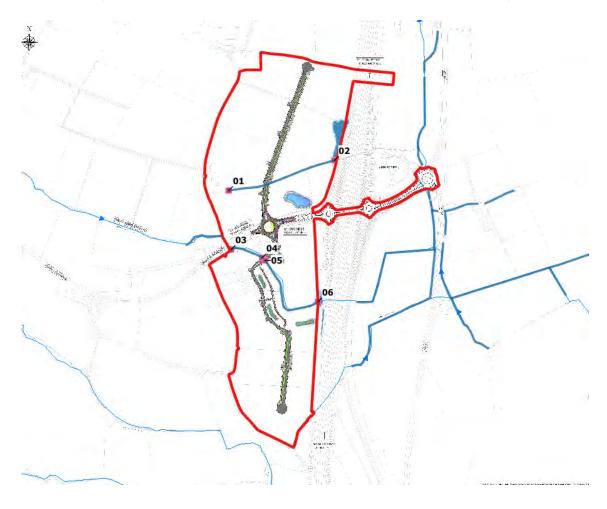

The climate change flood extents, overlain on the proposed layout, are included in Figure 4.3: Flood Extents Map - Proposed Scenario Climate Change. As shown, there is little change in flood extents as a result of climate change and no new areas of out-of-bank flooding.

Table 4.4: Modelled Flood Levels - Proposed Scenario Climate Change

	·	<u> </u>	
Model Node Reference	Location	Flood Zone A Level (mOD)	Flood Zone B Level (mOD)
01	Upstream extent of Land Drain in the north of the Site	42.19	42.29
02	Downstream extent of Land Drain in the north of the Site	38.66	38.71
03	Upstream extent of Balrickard Stream in the west of the Site	43.11	43.22
04	Upstream of existing crossing in the centre of the Site	42.28	42.56
05	Downstream of existing crossing in the centre of the Site	40.79	40.88
06	Downstream extent of Balrickard Stream in the east of the Site	39.19	39.35

Figure 4.3: Flood Extents Map - Proposed Scenario Climate Change

4.5 Surface Water Flooding

4.5.1 Pluvial Runoff onto Site

The OPW PFRA mapping indicates that the site may be at risk from surface water flooding. The site is situated at a higher or similar elevation than lands to the north, south and east. Therefore, surface water runoff from these areas will not pose a risk of pluvial flooding.

Lands at a higher elevation do exist to the west of the site so surface water from these areas may flow towards the site. It is noted that runoff from undeveloped / 'greenfield' lands to the west have been accounted for in the catchment hydrology estimates used as a basis for the hydraulic model and flows would be directed towards the preferential flow paths provided by watercourse and open drainage channels.

Therefore, risk of surface water flooding at the site is considered to be low. Mitigation of the residual risk of pluvial flooding, by providing adequate surface water drainage, is discussed in Section 0.

4.5.2 Pluvial Runoff from Site

All surface water runoff from the site would tend to drain towards watercourses and open channel drains within the site. There will be no potential for runoff from the site to flow towards neighbouring lands / properties.

Development at the site will increase the impermeable area of the site and cause an increase in the rate and volume of runoff from the site when compared to the existing scenario.

Mitigation of the residual impact of surface water from the development, by means of an effective surface water drainage network and surface water management, is discussed in Section 0.

5 SUMMARY OF FINDINGS AND RECOMMENDATIONS

5.1 Summary of Findings

It has been determined that while watercourses and open channel drains flows through and adjacent to the site, there is little out-of-bank flooding within the proposed development boundary. In relation to Flood Zones as defined by the OPW guidelines, the majority of the site lies in Flood Zone C with parts shown to lie in Flood Zone A and Zone B.

No other significant flood mechanisms exist at the site.

5.2 Design Considerations

The following section details measures incorporated within the proposal submitted in support of the planning application, and to be further developed in any detailed design post-determination of the planning application.

5.2.1 Land Use

All proposed 'less vulnerable' development has been sited in Flood Zone C with the exception of part of the access track in the centre of the site where crossing of the Balrickard Stream is unavoidable.

Therefore, the proposed development is compliant with the requirements of the OPW Guidelines and Fingal SFRA and a Justification Test is not required.

5.2.2 <u>Design Levels</u>

The majority of the proposed development is situated in Flood Zone C remote from the fluvial floodplain so minimum design levels do not apply with the exception of the watercourse crossing. The watercourse crossing will provide freeboard in line with OPW Section 50 requirements, thus ensuring no increase in flood risk elsewhere.

5.2.3 Access Levels

In line with the OPW Guidelines, access to and egress from the proposed development should be sited in Flood Zone C (i.e., outside the 0.1% AEP fluvial floodplain / Flood Zone B).

The majority of proposed access tracks, points and access / egress and connecting public roads are shown to be located in Flood Zone C so access / egress will be possible during an extreme flood event.

5.2.4 <u>Drainage Design</u>

Surface water drainage design should be as per the requirements of the Fingal Development Plan 2023 – 2029 and to the standards of Fingal County Council Water Services Department.

The proposed development crosses an existing open drainage channel in the northern part of the site. While not classed as a watercourse on EPA / OPW datasets, so not subject to Section 50 or forming a Flood Zone, the existing drainage function of the channel should be maintained. Details / sizing of required culvert and / or diversion to be confirmed at detailed design stage as part of surface water management design for the site.

Please refer to Engineering Planning Report (RPT-16_206A-012) Section 4 for details of the Surface Water Design and Surface Water Drainage Drawings 16_206A_CSE-GEN-XX-DR-C-1700 to 1705.

5.2.5 Proposed Watercourse Crossing

In order to facilitate crossing of the Balrickard Stream, a culvert will be required to facilitate access through the site. The proposed watercourse crossing is at the location of an existing culvert that is surcharged at the inlet in flood conditions which reduces flow downstream, protecting the M1 from additional flooding.

Therefore, the new culvert is similarly sized but increased to 900 mm (from 700 mm) dia. The meet OPW Section 50 requirements and provides 190 mm freeboard to the 1% + CC flood level. Hydraulic model testing of larger culverts, with additional freeboard, increases flood risk downstream which is not in keeping with other stated OPW / Fingal CC requirements. The proposed crossing has been shown not to increase flood risk upstream or downstream and Section 50 consent has been applied for on that basis.

Riparian maintenance requirements for culverts and watercourses are outlined in Section 5.3.1.

5.2.6 Future Development

The proposed development comprises the provision of key civil infrastructure to facilitate the future development of the lands for a commercial logistics / warehousing development. This development will become an extension of the existing M1 Business Park, situated at Courtlough, Co. Dublin.

All future developments shall be subject to their own planning applications in which the respective applicants will have to demonstrate compliance with the OPW Guidelines, Fingal CC SFRA and Development Plan as well as the Engineering Planning Report (RPT-16_206A-012) overall drainage methodology.

The flood maps included in the report are trimmed to the site boundary. However, flooding does spill from the site onto the M1 in the north east, adjacent to the only area of fluvial ponding. Therefore, any future development in that area should consider the opportunity to reduce flood risk within the site and onto the M1 as part of any proposed layout.

5.3 Maintenance Requirements

5.3.1 <u>Watercourse Maintenance</u>

The ultimate owner / occupier(s) of the site shall be required to include general watercourse / culvert maintenance which will reduce the risk of blockage at downstream culverts and screens and maintain the capacity of the channels. The following measures are intended to inform any future maintenance programme for watercourses and culverts:

- Maintenance should consist of removal of any items within the channel that can impede its flow including (small) trees, excess vegetation etc.
- River banks should be due adequate attention which would normally consist of removal of brambles, bushes and stiff vegetation; these reduce flow capacity and can encourage collection of debris increasing the risk of blockages. Grass and nettles do not always need removing as they will lay flat during high flows.
- Weed growth should be removed from the centre of the channel as this will impede the flow and
 increase water levels up stream. Hand picking is best but cutting off under the water level is
 acceptable if it is done on an annual basis.
- Build-up of silt in watercourse channels and at culvert inlets should be removed and disposed of appropriately.
- Cyclical (min. annual) visual inspection of culvert inlets and screens and removal of debris as required, ensuring debris removed is not deposited in an area likely to fall back into the channel.

5.3.2 Drainage System Maintenance

The ultimate owner / occupier(s) shall be responsible for maintenance of drainage networks at the site. Where any aspect was not 'taken in charge', the owner / occupier(s) is to ensure that maintenance of the drainage system is provided for as part of the overall management plan for the site.

Detailed drainage layout for the site is to ensure that key SuDS features requiring maintenance are located in accessible public locations.

17

Maintenance plans for drainage assets should include (where applicable):

- Cyclical (min. annual) check of any flow control device in particular clearing of debris;
- Cyclical (min. annual) visual inspection of any surface or underground attenuation features blockages and obstructions to be removed by jetting as required.

5.4 Summary of Flood Risk and Mitigation

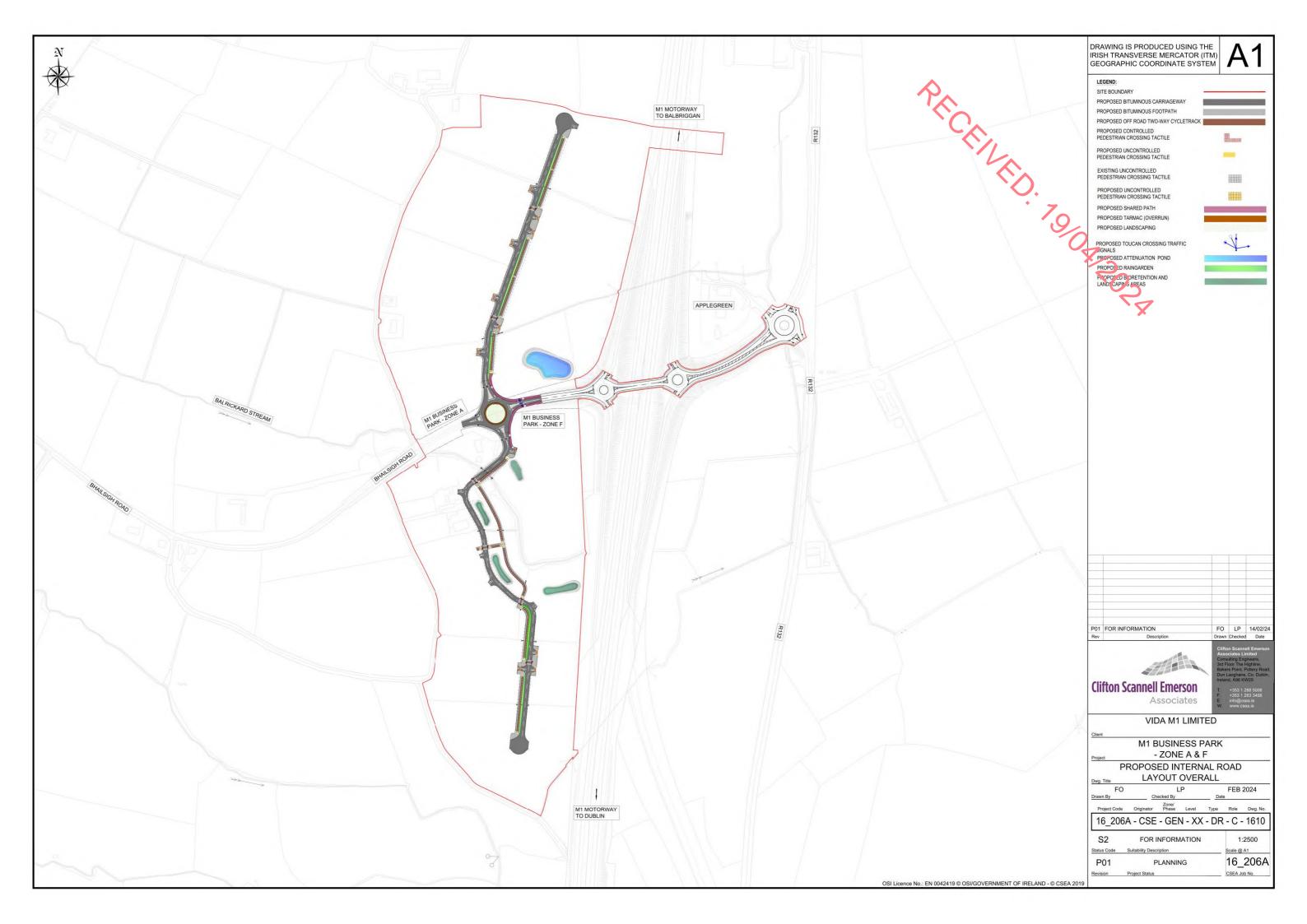
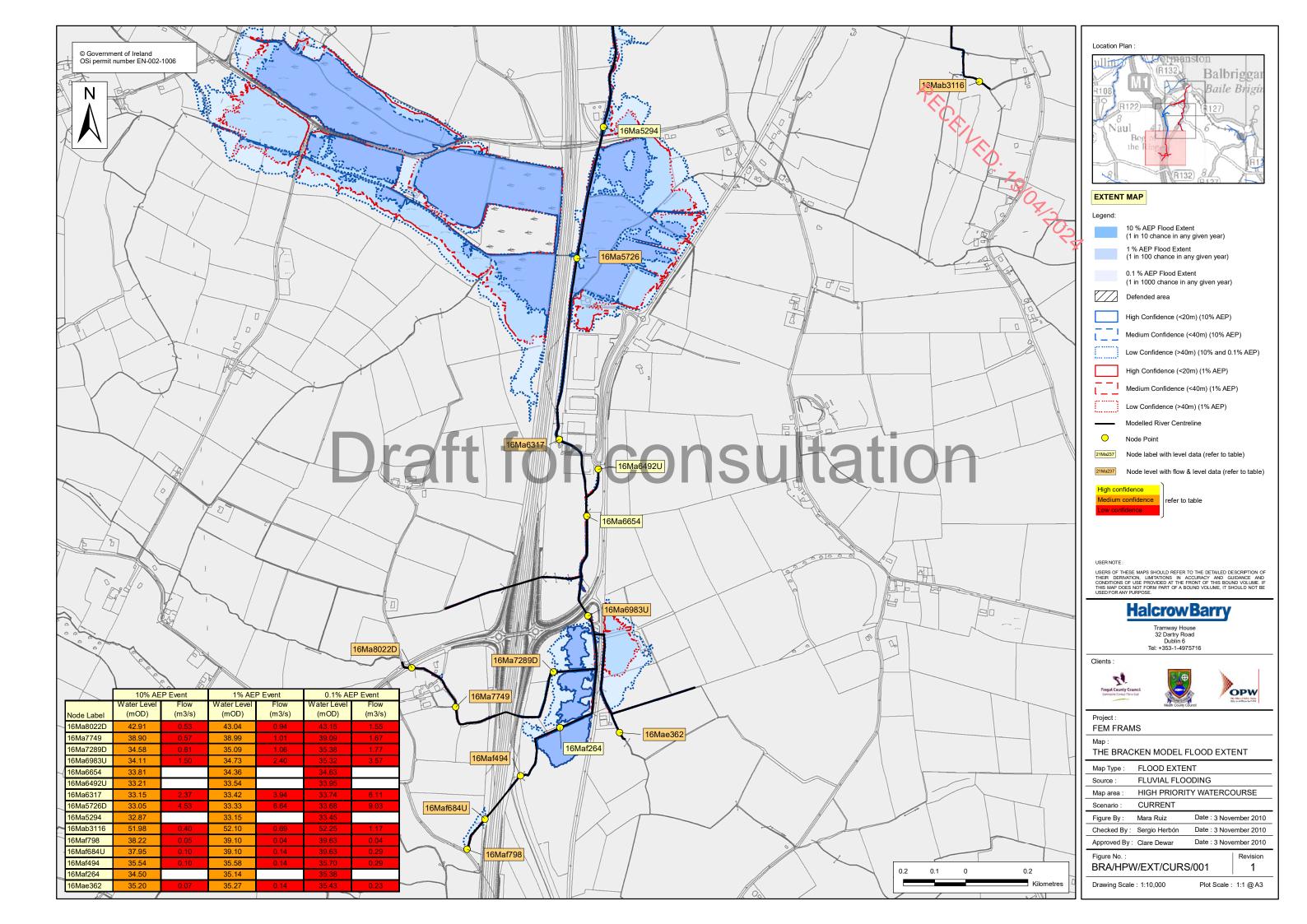
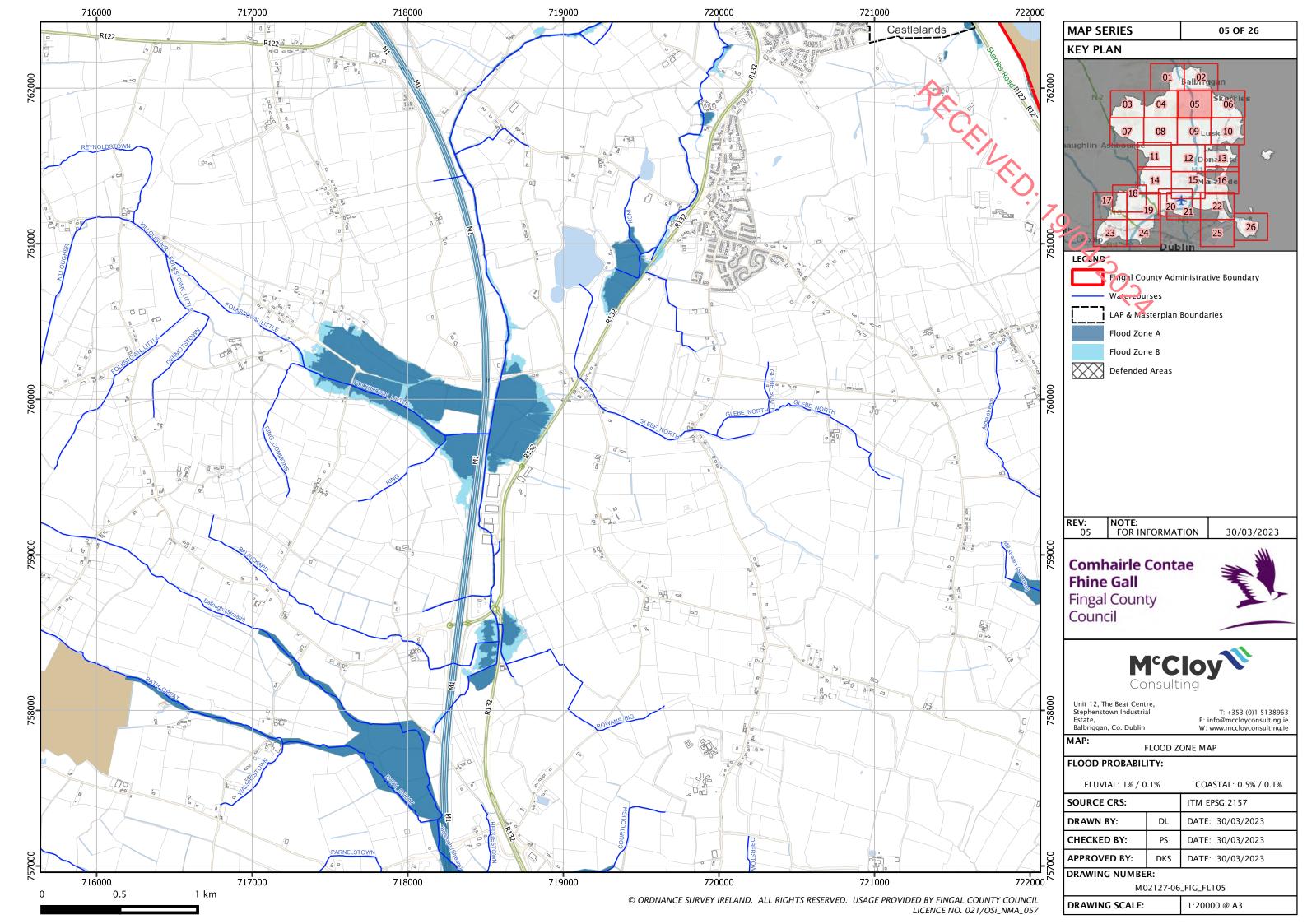
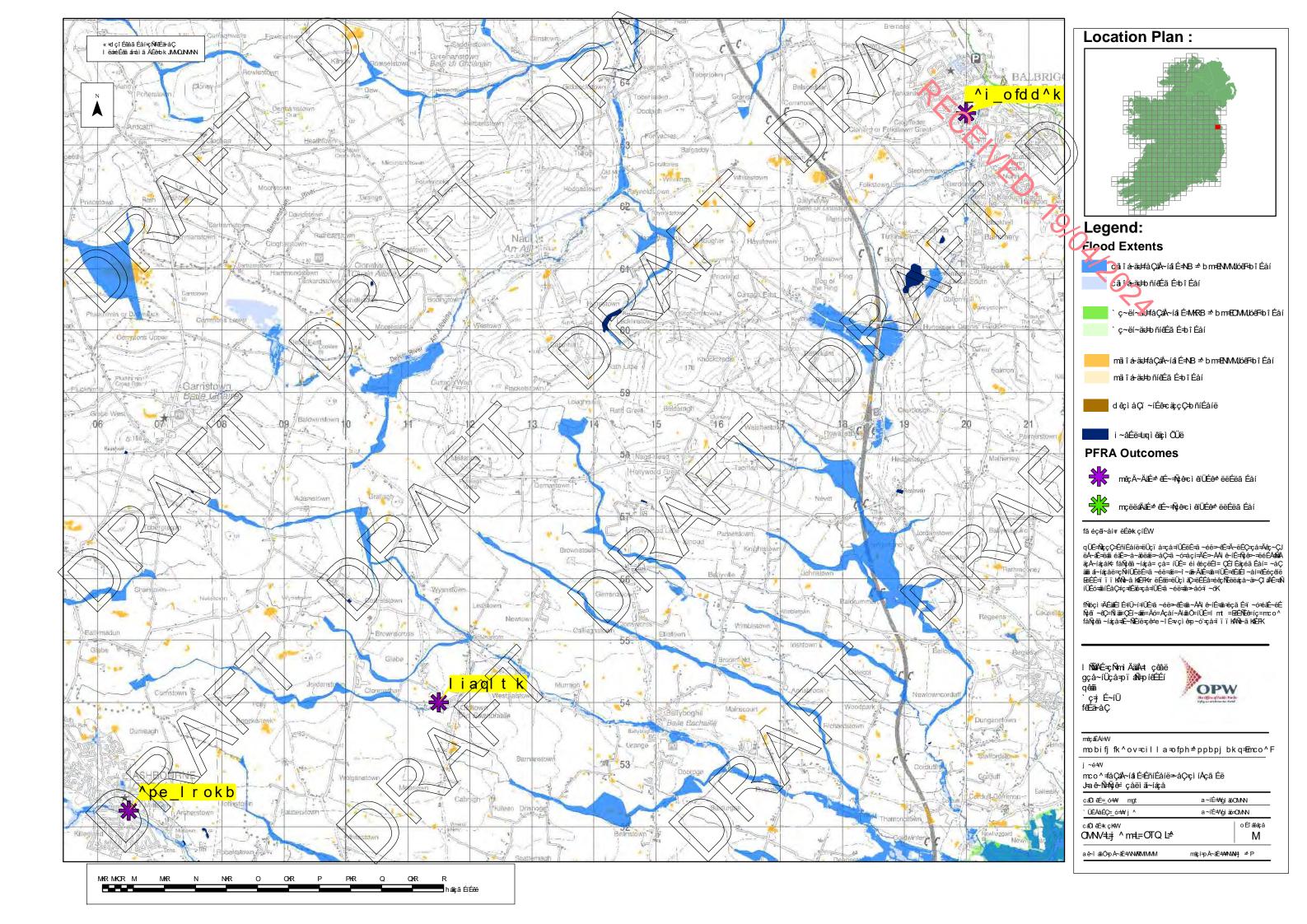

Table 5.1 summarises the mechanisms of flooding identified in this assessment, their associated hazards / consequence (as set out in the OPW Guidelines), and proposed measures to mitigate the predicted risk.

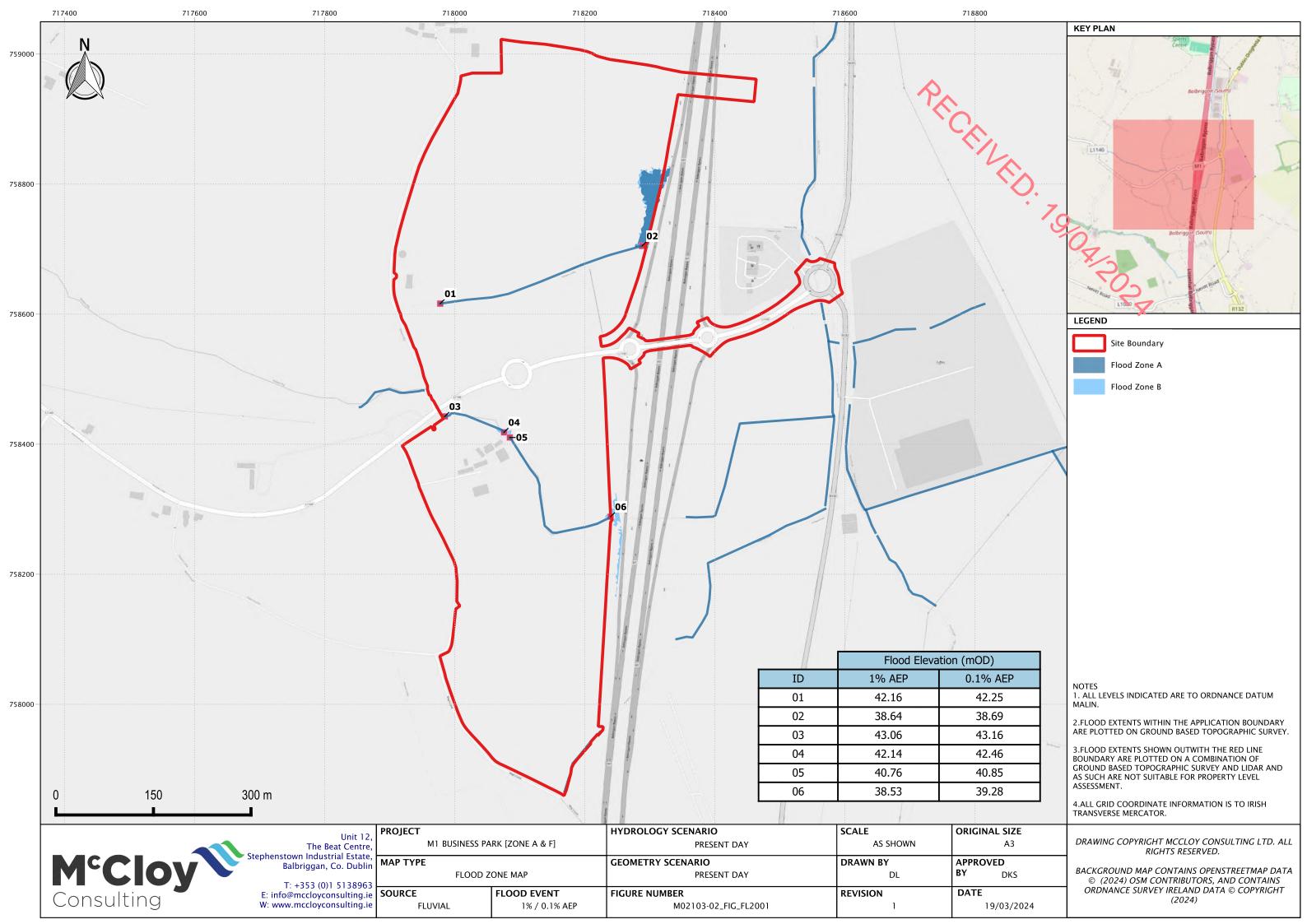
Table 5.1: Summary of Risks and Mitigation

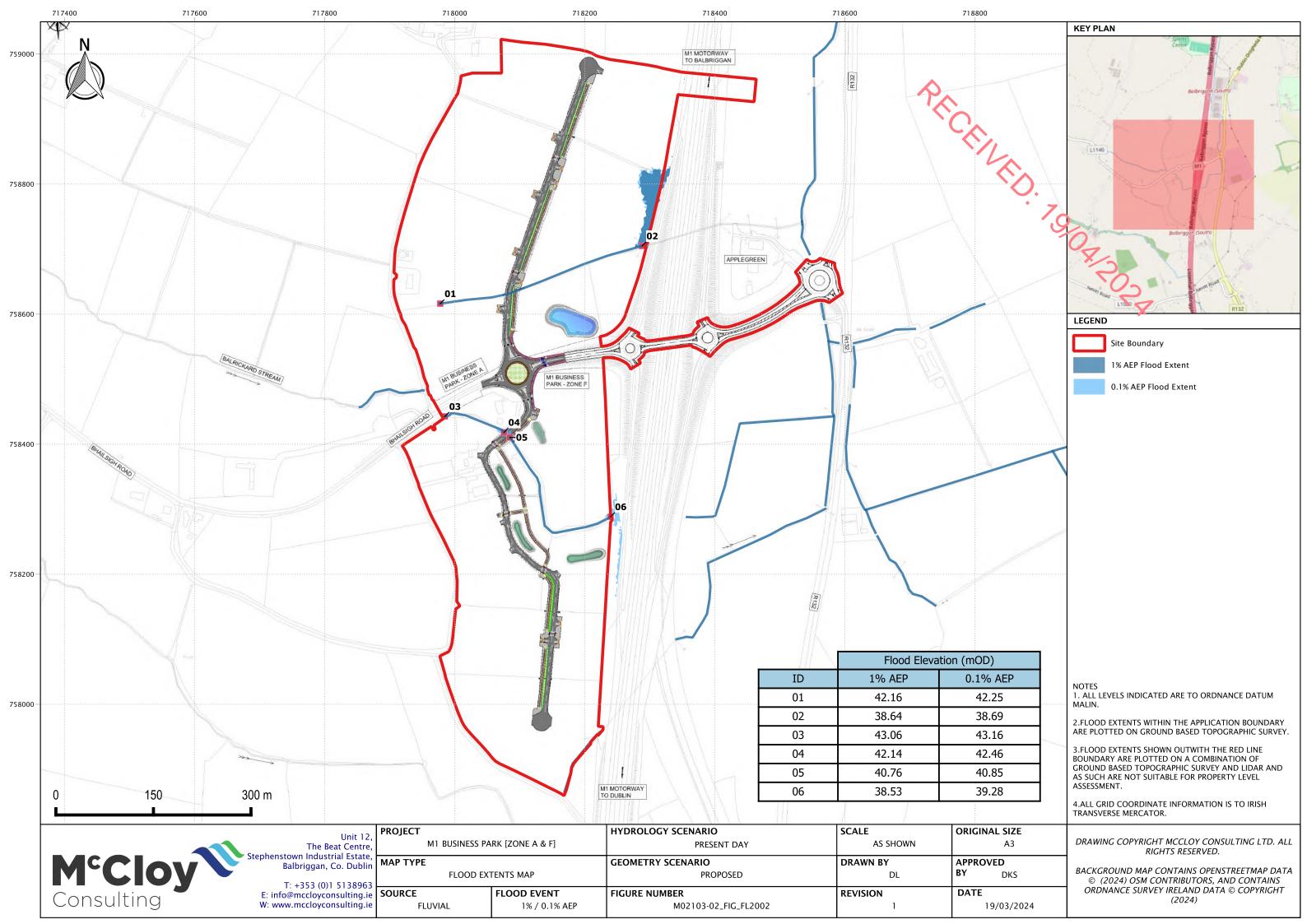
Identified Flood Mechanism	Consequence	Summary & Mitigating Measures	
Fluvial flooding	Risk to life and property	All proposed development is sited in Flood Zone C with the exception of the watercourse crossing which will provide freeboard to the design flood level.	
Effect of climate change	Risk to life and property	All proposed development will be outside the climate change floodplain.	
Effect of the Development	Increased risk to adjacent lands and developments	All proposed development is in Flood Zone C and as such, can have no impact on flood risk elsewhere. Hydraulic modelling has demonstrated that the watercourse crossing will not impact flood risk elsewhere.	
	Risk to property on site, risk to adjacent lands and property.	On-site surface water flooding shall be mitigated by a site drainage system to comply with local authority drainage standards.	
Pluvial / Surface Water flooding		Off-site surface water effects shall be mitigated by provision of SuDS components and no increase in rate and volume of runoff of surface water from the site as a result of the development.	











Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

Geosyntec Consulting Unit 10 Northwood Court Northwood Crescent Santry Dublin Ireland **D09 W8DT**

Attention: Stephen Coakley

Date: 17th July, 2023

Your reference :

Our reference : Test Report 23/10858 Batch 1

M1 Business Park Location:

Date samples received : 4th July, 2023

Status: Final Report

1 Issue:

Six samples were received for analysis on 4th July, 2023 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Geosyntec Consulting Client Name:

Reference: Location:

M1 Business Park

Contact: EMT Job No: Stephen Coakley

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

23/10858 EMT Sample No. 5-8 21-24

Sample ID	TP02	TP06					79	ONS	
Danth									
Depth								e attached nations and a	
COC No / misc							d. 2.0 v. c	anono ana a	× cyc
Containers	VJTB	VJTB							
Sample Date	03/07/2023	03/07/2023							
Sample Type	Soil	Soil							
Batch Number	1	1							Method
Date of Receipt	04/07/2023	04/07/2023					LOD/LOR	Units	No.
Antimony	5	4					<1	mg/kg	TM30/PM15
Arsenic#	12.6	24.5					<0.5	mg/kg	TM30/PM15
Barium #	92	100					<1	mg/kg	TM30/PM15
Cadmium#	3.8	1.3					<0.1	mg/kg	TM30/PM15
Chromium #	80.8	70.2					<0.5	mg/kg	TM30/PM15
Copper#	82	51					<1	mg/kg	TM30/PM15
Lead #	21	20					<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Molybdenum #	8.9	7.9					<0.1	mg/kg	TM30/PM15
Nickel #	78.3	48.7					<0.7	mg/kg	TM30/PM15
Selenium#	5	2					<1	mg/kg	TM30/PM15
Total Sulphate as SO4#	112	327					<50	mg/kg	TM50/PM29
Water Soluble Boron #	0.3	0.7					<0.1	mg/kg	TM74/PM32
Zinc#	88	74					<5	mg/kg	TM30/PM15
								99	
PAH MS									
Naphthalene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06					<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
PAH 6 Total #	<0.22	<0.22					<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.22	<0.22					<0.22	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1					<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	94	91					<0	mg/kg %	TM4/PM8
17.11 Ourlogate 70 Necovery	34	31					-0	/0	I IVI -7 /F IVIO
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30					<30	mg/kg	TM5/PM8/PM16
							()		I

Geosyntec Consulting Client Name:

Reference:

Contact:

Location:

M1 Business Park

Stephen Coakley

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

23/10858 EMT Job No: Please see attached notes for all abbreviations and acronyms EMT Sample No. 21-24 TP06 Sample ID Depth COC No / misc

Containers	VJTB	VJTB	
Sample Date	03/07/2023	03/07/2023	
Sample Type	Soil	Soil	
Batch Number	1	1	
Date of Receipt	04/07/2023	04/07/2023	

Sample Type	Soil	Soil							
Batch Number	1	1					LOD/LOR	Units	Method No.
Date of Receipt	04/07/2023	04/07/2023							No.
TPH CWG									
Aliphatics									
>C5-C6 (HS_1D_AL)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4					<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_CU_1D_AL)	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_CU_1D_AL)	<26	<26					<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10					<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10					<10	mg/kg	TM5/PM8/PM16
Aromatics									
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4					<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7					<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_CU_1D_AR)	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_CU_1D_AR)	<26	<26					<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52					<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16

Total aromatics C5-40 (EH+HS_CU_1D_AR)	<26	<26					<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52					<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10					<10	mg/kg	TM5/PM8/PM16
MTBE#	<5	<5					<5	ug/kg	TM36/PM12
Benzene#	<5	<5					<5	ug/kg	TM36/PM12
Toluene#	<5	<5					<5	ug/kg	TM36/PM12
Ethylbenzene#	<5	<5					<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5					<5	ug/kg	TM36/PM12
o-Xylene#	<5	<5					<5	ug/kg	TM36/PM12
PCB 28#	<5	<5					<5	ug/kg	TM17/PM8
PCB 52#	<5	<5					<5	ug/kg	TM17/PM8
PCB 101#	<5	<5					<5	ug/kg	TM17/PM8
PCB 118#	<5	<5					<5	ug/kg	TM17/PM8
PCB 138#	<5	<5					<5	ug/kg	TM17/PM8
PCB 153#	<5	<5					<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5					<5	ug/kg	TM17/PM8

<35

<35

Total 7 PCBs#

TM17/PM8

<35

ug/kg

EMT Sample No.

Geosyntec Consulting Client Name:

Reference:

Location: Contact:

M1 Business Park Stephen Coakley

5-8 21-24

EMT Job No:

23/10858

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	5-8	21-24					` O.		
Sample ID	TP02	TP06					. 79	e attached n	
·								OX,	
Depth							Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and a	onyms
Containers	VJTB	VJTB							
Sample Date	03/07/2023	03/07/2023							
Sample Type	Soil	Soil							
Batch Number		1							
Date of Receipt							LOD/LOR	Units	Method No.
Phenol#	<0.01	<0.01					<0.01	mg/kg	TM26/PM21B
Filerioi	\\0.01	~0.01					~0.01	mg/kg	TWIZO/F WIZ TD
Natural Moisture Content	24.9	17.1					<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	19.9	14.6					<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3					<0.3	mg/kg	TM38/PM20
Chromium III	80.8	70.2					<0.5	mg/kg	NONE/NONE
Total Cyanide #	<0.5	<0.5					<0.5	mg/kg	TM89/PM45
-,								3 3	
Total Organic Carbon #	1.45	1.11					<0.02	%	TM21/PM24
Sulphide	<10	<10					<10	mg/kg	TM107/PM45
Elemental Sulphur	11	3					<1	mg/kg	TM108/PM114
pH#	7.92	7.00					<0.01	pH units	TM73/PM11
P	-							•	
-			 	 					

Client Name: Geosyntec Consulting

Reference:

MARI BIL

Location: Contact: M1 Business Park Stephen Coakley

EMT Job No:

23/10858

Report: CEN 10:1 1 Batch

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

EMT Sample No. 5-8 21-24

Sample ID TP02 TP06

Depth
COC No / misc

							i	~2 ₂	
Depth								e attached n	
COC No / misc							abbrevia	ations and a	onyms
Containers	VJTB	VJTB							
Sample Date	03/07/2023	03/07/2023							
Sample Type	Soil	Soil							
Batch Number	1	1							Method
Date of Receipt	04/07/2023	04/07/2023					LOD/LOR	Units	No.
Dissolved Antimony#	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025					<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025					<0.025	mg/kg	TM30/PM17
Dissolved Barium#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Boron #	<0.03	<0.03					<0.012	mg/l	TM30/PM17
	<0.012	<0.012					<0.012		TM30/PM17
Dissolved Boron (A10)#	<0.005	<0.005					<0.12	mg/kg	TM30/PM17
Dissolved Cadmium#								mg/l	
Dissolved Cadmium (A10)#	<0.005	<0.005					<0.005	mg/kg	TM30/PM17
Dissolved Chromium #	<0.0015	<0.0015					<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015					<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007					<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07					<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005					<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05					<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum #	<0.002	0.006					<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	<0.02	0.06					<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002	<0.002					<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02					<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	< 0.03	<0.03					<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003					<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	<0.03	<0.03					<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF #	<0.00001	<0.00001					<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001					<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1					<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	<0.3					<0.3	mg/l	TM173/PM0
Fluoride	<3	<3					<3	mg/kg	TM173/PM0
. i.uoiiuo	v	Ū						99	
Sulphate as SO4 #	2.5	0.9					<0.5	mg/l	TM38/PM0
Sulphate as SO4#	25	9					<5	mg/kg	TM38/PM0
Mass of raw test portion	0.1145	0.1081						kg	NONE/PM17
Chloride #	<0.3	<0.3					<0.3	mg/l	TM38/PM0
Chloride #	<3	<3					<3	mg/kg	TM38/PM0
Mass of dried test portion	0.09	0.09						kg	NONE/PM17
A	-0.00	-0.00					-0.00	, s. n	TM20/DM2
Ammoniacal Nitrogen as N#	<0.03	<0.03					<0.03	mg/l	TM38/PM0

Geosyntec Consulting Client Name:

Reference:

Location: Contact:

M1 Business Park

21-24

5-8

Stephen Coakley 23/10858 EMT Job No:

EMT Sample No.

Report: CEN 10:11 Batch

Solids: V=60g VOC jar, J=250g glassjar, T=plastic tub

		S.
		7.0
		0
		* 5

							<u> </u>		
Sample ID	TP02	TP06					٠. 7 ₉	0	
Depth							Diago so	o attacked to	otos for all
COC No / misc							abbrevi	e attached nations and a	nyms
Containers		VJTB							
Sample Date									
Sample Type		Soil							
Batch Number		1							
							LOD/LOR	Units	Method No.
Date of Receipt							-0.0		TM38/PM0
Ammoniacal Nitrogen as N#	<0.3	<0.3					<0.3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	<2					<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20					<20	mg/kg	TM60/PM0
Total Dissolved Solids#	<35	41					<35	mg/l	TM20/PM0
Total Dissolved Solids #	<350	410					<350	mg/kg	TM20/PM0

EPH Interpretation Report

Client Name: Geosyntec Consulting

Reference: -

Location: M1 Business Park **Contact:** Stephen Coakley

Matrix : Solid

EMT				EMT	7.0
Job	Batch	Sample ID	Depth	Sample	EPH Interpretation
No.	Daton	םו סוקווגים	Борит	No.	EPH Interpretation No interpretation possible
		TDOO			\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
23/10858	1	TP02		5-8	
23/10858	1	TP06		21-24	No interpretation possible

Client Name: Geosyntec Consulting

Reference:

Location: M1 Business Park
Contact: Stephen Coakley

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative ampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/10858	1	TP02		8	Emily Anderton	14/07/2023	General Description (Bulk Analysis)	Beige soil with stones
					Emily Anderton	14/07/2023	Asbestos Fibres	NAD
					Emily Anderton	14/07/2023	Asbestos ACM	NAD
					Emily Anderton	14/07/2023	Asbestos Type	NAD
23/10858	1	TP06		24	Emily Anderton	14/07/2023	General Description (Bulk Analysis)	Brown soil with stones
					Emily Anderton	14/07/2023	Asbestos Fibres	NAD
					Emily Anderton	14/07/2023	Asbestos ACM	NAD
					Emily Anderton	14/07/2023	Asbestos Type	NAD

Client Name: Geosyntec Consulting

Reference:

Location: M1 Business Park **Contact:** Stephen Coakley

Notification of Deviating Samples

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/10858	2
						2
						×

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/10858

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

23/10858 EMT Job No.:

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact . 79/04/2024 the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

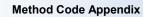
Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	ISO17025 (SANAS Ref No.T0729) accredited - South Africa Indicates analyte found in associated method blank. Dilution required. MCERTS accredited. Not applicable No Asbestos Detected.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED


HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Extractable Hydrocarbons - i.e. everything extracted by the solvent. Clean-up - e.g. by florisil, silica gel. GC - Single coil gas chromatography. Aliphatics & Aromatics. Aliphatics only.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			ZAR.	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes

						A mala da da ma	
Test Method No.	Description	Prep Method No. (if appropriate)	Description	17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			VAR.	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.	Yes		AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
ТМ36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			WARD ON	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.			AR	Yes
TM108	Determination of Elemental Sulphur by Reversed Phase High Performance Liquid Chromatography with Ultra Violet spectroscopy.	PM114	End over end extraction of dried and crushed soil samples for organic analysis. The solvent mix varies depending on analysis required			AD	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	Office	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			ONIPOS	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	7